首页> 外文期刊>IEEE transactions on network and service management >Optimized IoT Service Chain Implementation in Edge Cloud Platform: A Deep Learning Framework
【24h】

Optimized IoT Service Chain Implementation in Edge Cloud Platform: A Deep Learning Framework

机译:优化的IOT服务链在边缘云平台中实现:深度学习框架

获取原文
获取原文并翻译 | 示例

摘要

Internet of Things (IoT) services have been implemented for several network applications from smart cities to rural areas. However, there are many barriers to provide an efficient solution for the IoT service deployment underlying innovation SDN/NFV-based technologies. First, though an IoT service can flexibly deploy via virtual network functions (VNFs), a deployment scheme needs to solve the joint routing and resource allocation problem, which becomes more difficult than the traditional centralized cloud/datacenter solution due to distributed resources in the edge-cloud network. In addition, due to uncertain workloads in IoT services, static optimization solutions may not deal with uncompleted knowledge of the entire input, which is often given by assumptions, but unrealistic in current provisioning approaches. Aiming to address these issues, we model an online mechanism for the dynamic IoT service chain deployment to optimize the operational cost in a finite horizon. We propose a JOint Routing and Placement problem for IoT service chain (JORP) that can dynamically scale in/out the number of VNF instances. We then propose a learning method to efficiently solve JORP based on branch-and-bound (BnB). Our proposed learning mechanism can intelligently imitate the branching/pruning actions of BnB, and remove unlikely solutions in the search space based on the deep neural network model to improve the performance. In that respect, we take an intensive simulation that illustrates the promising result of our proposed deep learning method compared to BnB and the greedy baseline in terms of the performance of the algorithm and the operational cost reduction.
机译:事物互联网(物联网)已经实施了来自智能城市的几个网络应用到农村地区。但是,为基于IOT服务部署的基础创新SDN / NFV技术提供了许多障碍。首先,尽管IOT服务可以通过虚拟网络功能(VNFS)灵活地部署,但部署方案需要解决联合路由和资源分配问题,这与边缘中的分布式资源导致的传统集中云/数据中心解决方案变得更加困难-Cloud网络。此外,由于IOT服务中的不确定工作负载,静态优化解决方案可能无法处理整个输入的未完成知识,这通常是由假设给出的,而是在当前供应方法中的不现实程度。旨在解决这些问题,我们模拟了动态物联网服务链部署的在线机制,以优化有限地平线的运营成本。我们为物联网服务链(JORP)提出了一个联合路由和放置问题,可以动态地缩放/输出VNF实例的数量。然后,我们提出了一种学习方法,可以基于分支和绑定(BNB)有效地解决JORP。我们所提出的学习机制可以智能地模仿BNB的分支/修剪动作,并根据深度神经网络模型去除在搜索空间中的不太可能的解决方案,以提高性能。在这方面,我们采取了密集的模拟,说明了与算法性能的BNB和贪婪基线相比,我们提出了深度学习方法的有希望的结果和贪婪基线。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号