首页> 外文期刊>Network and Service Management, IEEE Transactions on >WIDS: An Anomaly Based Intrusion Detection System for Wi-Fi (IEEE 802.11) Protocol
【24h】

WIDS: An Anomaly Based Intrusion Detection System for Wi-Fi (IEEE 802.11) Protocol

机译:WIDS:基于异常的Wi-Fi入侵检测系统(IEEE 802.11)协议

获取原文
获取原文并翻译 | 示例

摘要

Over the last few decades, the Internet has seen unprecedented growth, with over 4.57 billion active users as of July 2022, encompassing 59% of the global population. In recent years, we have seen an increase in mobile computing and the Internet of Things (IoT), allowing more users to communicate through the Internet using wireless devices. Modern Internet users use their wireless IoT devices for a wide variety of services that include cloud computing and storage, social networking, content services, online banking, shopping, to name a few. Moreover, with the omnipresence of IoT devices, wireless networks are used for services like device control, user authentication, etc. Wi-Fi is the network of choice for most of these wireless communications. Although Wi-Fi networks have improved over recent years, little has been done to secure Wi-Fi networks against attacks. In this article, we present a Wireless Intrusion Detection System (WIDS); an anomaly behavior analysis approach to detect attacks on Wi-Fi networks with high accuracy and low false alarms. In this approach, we model the normal behavior of the Wi-Fi protocol, using n-grams, and use machine learning models to classify Wi-Fi traffic flows as normal or malicious. We have extensively tested our approach on multiple datasets collected locally at the University of Arizona and AWID family of datasets. Our approach can successfully detect all attacks on Wi-Fi protocols with low false positives (0.0174) and a varying low rate of false negatives for different attacks.
机译:在过去的几十年中,互联网已经看到前所未有的增长,截至2022年7月,超过45.7亿活跃的用户,包括59%的全球人口。近年来,我们已经看到了移动计算和物联网(物联网)的增加,允许更多用户使用无线设备通过互联网进行通信。现代互联网用户使用他们的无线物联网设备,包括多种服务,包括云计算和存储,社交网络,内容服务,网上银行,购物,名称。此外,随着物联网设备的全态,无线网络用于设备控制,用户认证等服务。Wi-Fi是大多数这些无线通信的选择网络。虽然Wi-Fi网络近年来有所改善,但很少完成以保护Wi-Fi网络免受攻击。在本文中,我们介绍了一种无线入侵检测系统(Wids);一种异常行为分析方法,以检测高精度和低误报的Wi-Fi网络攻击。在这种方法中,我们使用n克模拟Wi-Fi协议的正常行为,并使用机器学习模型将Wi-Fi流量分类为正常或恶意。我们在亚利桑那大学和Awid of DataSets系列的多个数据集中广泛测试了我们的方法。我们的方法可以成功地检测对Wi-Fi协议的所有攻击,具有低误报(0.0174),以及不同攻击的误报的不同低速率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号