首页> 外文期刊>Network and Service Management, IEEE Transactions on >Modeling and Forecasting of Time-Aware Dynamic QoS Attributes for Cloud Services
【24h】

Modeling and Forecasting of Time-Aware Dynamic QoS Attributes for Cloud Services

机译:云服务时间感知动态QoS属性的建模与预测

获取原文
获取原文并翻译 | 示例

摘要

Currently, statistical time-series methods have primarily been employed to predict time-aware dynamic quality of service (QoS) attributes for Web services. In this paper, we propose the application of genetic programming (GP) for such predictions. Our experimental results indicate that the GP-based approach is more accurate than the other approaches presented for comparison. However, for the efficient management of such attributes for cloud services, including their modeling and forecasting, the current research is insufficient because a set of research questions remains unanswered. In this paper, we first clearly define these research questions and then design and perform a set of empirical experiments to address the questions. Finally, the experimental results are exhaustively discussed to answer the studied research questions. The empirical study and analysis presented in this paper could be informative for the management (modeling and forecasting) of the time-aware dynamic QoS attributes of cloud services. For example, we verify that machine-learning approaches are generally superior to the widely used statistical time-series methods in terms of both modeling accuracy and forecasting accuracy. Furthermore, after considering a variety of situations and cases, the GP-based approach is still the best option for the studied problem. In addition, except for the technical approaches, this paper also exhaustively studies the influence of the properties of the cloud dynamic QoS attributes, including their size and time granularity.
机译:目前,统计时间序列方法主要用于预测Web服务的时间感知动态服务(QoS)属性。在本文中,我们提出了遗传编程(GP)的应用来实现这种预测。我们的实验结果表明,基于GP的方法比对比较的其他方法更准确。然而,为了有效管理云服务的这种属性,包括其建模和预测,目前的研究不足,因为一组研究问题仍未得到答复。在本文中,我们首先清楚地定义了这些研究问题,然后设计并执行了一系列的实证实验来解决这些问题。最后,讨论了实验结果以回答研究的研究问题。本文提出的实证研究和分析可能是云服务时空动态QoS属性的管理(建模和预测)的信息。例如,我们验证机器学习方法通​​常在建模精度和预测精度方面优于广泛使用的统计时间序列方法。此外,在考虑各种情况和情况之后,基于GP的方法仍然是研究问题的最佳选择。此外,除了技术方法外,本文还竭诚研究云动态QoS属性的性质的影响,包括其大小和时间粒度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号