首页> 外文期刊>IEEE transactions on network and service management >Location Semantics Identification via Users’ Clickstreams in Mobile Social Networking
【24h】

Location Semantics Identification via Users’ Clickstreams in Mobile Social Networking

机译:通过移动社交网络中用户点击流的位置语义识别

获取原文
获取原文并翻译 | 示例

摘要

With the rise of social networking and the awareness of privacy protection, the large-scale positioning data is getting harder to access while the clickstream data of social networking is accumulating. It is necessary to conduct a comprehensive study on the temporal property and spatial distribution of social network's clickstream to determine the latent relationship between clickstream and location semantics which semantically annotate locations to help us understand the purpose of a social network user at a certain location and a particular time. In this paper, we first infer the location semantics from Internet logs as our baseline which is a large scale, imprecise positioning mobile dataset through combining the utilization of derived time pattern and speed pattern. Then we design a method to reconstruct location semantics through the social network. We are the first to our knowledge that define "click motif" of social network's clickstream which is the combination of clicks in clickstream that occurs repeatedly and has significance. Click motif not only can help us to classify location semantics but also enhance the user experience of social networking. Besides, we propose a completed process to extract typical click motifs from a large-scale complicated clickstream data via embedding and clustering method. By extensive experiments and analysis, we demonstrate that different combination of click motifs can convey the users' location semantics, therefore clickstream may disclose location privacy.
机译:随着社交网络的兴起和对隐私保护的关注,随着社交网络点击流数据的积累,大规模定位数据越来越难以访问。有必要对社交网络点击流的时间属性和空间分布进行全面研究,以确定点击流与位置语义之间的潜在关系,这些语义在语义上标注位置,以帮助我们了解特定位置和位置的社交网络用户的目的。特定的时间。在本文中,我们首先结合利用导出的时间模式和速度模式,从互联网日志中推断出位置语义作为基准,这是大规模,不精确定位的移动数据集。然后设计了一种通过社交网络重构位置语义的方法。我们是第一个定义社交网络点击流的“点击主题”的人,社交网络点击流是点击流中重复出现并具有重要意义的点击的组合。单击主题不仅可以帮助我们对位置语义进行分类,还可以增强社交网络的用户体验。此外,我们提出了一种通过嵌入和聚类方法从大规模复杂点击流数据中提取典型点击主题的完整过程。通过广泛的实验和分析,我们证明了不同的点击主题组合可以传达用户的位置语义,因此点击流可能会泄露位置隐私。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号