首页> 外文期刊>IEEE transactions on network and service management >Cost-Driven Scheduling for Deadline-Based Workflow Across Multiple Clouds
【24h】

Cost-Driven Scheduling for Deadline-Based Workflow Across Multiple Clouds

机译:基于成本的日程安排跨多个云的基于截止日期的工作流

获取原文
获取原文并翻译 | 示例

摘要

With the development of cloud computing, the coexistence of multiple cloud service providers appears in the current cloud market. Due to heterogeneous instance types, different bandwidths and various price models among multiple clouds, it is a challenging issue to schedule a deadline-constrained scientific workflow across multiple clouds. Existing research for workflow scheduling are mostly in the traditional distributed computing environment (such as grid), and only a few primal contributions are made in the cloud environment. This paper proposes a scheduling strategy for a deadline-constrained scientific workflow across multiple clouds. In order to minimize the execution cost of the workflow while meeting its deadline, our strategy utilizes the discrete particle swarm optimization technique, and adopts randomly two-point crossover operator and randomly single point mutation operator of the genetic algorithm. Besides, the strategy optimizes the performance for both computation cost and data transfer cost across multiple clouds. Our strategy is evaluated through well-known workflows, and experimental results show that it performs better than other state-of-the-art strategies.
机译:随着云计算的发展,多个云服务提供商的共存出现在当前的云市场中。由于实例类型不同,多个云之间具有不同的带宽和各种价格模型,因此在多个云之间安排受期限限制的科学工作流是一个具有挑战性的问题。现有的工作流调度研究主要在传统的分布式计算环境(例如网格)中进行,而在云环境中仅做出了一些主要贡献。本文提出了一种用于在多个云之间进行期限限制的科学工作流的调度策略。为了在满足工作期限的情况下最大程度地降低工作流的执行成本,我们的策略采用离散粒子群优化技术,并采用遗传算法的随机两点交叉算子和随机单点变异算子。此外,该策略还优化了跨多个云的计算成本和数据传输成本的性能。通过众所周知的工作流程对我们的策略进行了评估,实验结果表明,该策略的效果要优于其他最新策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号