首页> 外文期刊>IEEE Transactions on Medical Imaging >DeepBranch: Deep Neural Networks for Branch Point Detection in Biomedical Images
【24h】

DeepBranch: Deep Neural Networks for Branch Point Detection in Biomedical Images

机译:DeepBranch:生物医学图像中分支点检测深度神经网络

获取原文
获取原文并翻译 | 示例

摘要

Morphology reconstruction of tree-like structures in volumetric images, such as neurons, retinal blood vessels, and bronchi, is of fundamental interest for biomedical research. 3D branch points play an important role in many reconstruction applications, especially for graph-based or seed-based reconstruction methods and can help to visualize the morphology structures. There are a few hand-crafted models proposed to detect the branch points. However, they are highly dependent on the empirical setting of the parameters for different images. In this paper, we propose a DeepBranch model for branch point detection with two-level designed convolutional networks, a candidate region segmenter and a false positive reducer. On the first level, an improved 3D U-Net model with anisotropic convolution kernels is employed to detect initial candidates. Compared with the traditional sliding window strategy, the improved 3D U-Net can avoid massive redundant computations and dramatically speed up the detection process by employing dense-inference with fully convolutional neural networks (FCN). On the second level, a method based on multi-scale multi-view convolutional neural networks (MSMV-Net) is proposed for false positive reduction by feeding multi-scale views of 3D volumes into multiple streams of 2D convolution neural networks (CNNs), which can take full advantage of spatial contextual information as well as fit different sizes. Experiments on multiple 3D biomedical images of neurons, retinal blood vessels and bronchi confirm that the proposed 3D branch point detection method outperforms other state-of-the-art detection methods, and is helpful for graph-based or seed-based reconstruction methods.
机译:体内图像的形态重建在体积图像中的树状结构,如神经元,视网膜血管和支气管,对生物医学研究具有根本兴趣。 3D分支点在许多重建应用中发挥着重要作用,特别是对于基于图形或基于种子的重建方法,并且可以帮助可视化形态结构。有一些手工制作的模型,提出了检测分支点。然而,它们高度依赖于不同图像参数的经验设置。在本文中,我们提出了一种用于双层设计卷积网络的分支点检测的DeepBranch模型,候选区域分段器和假阳性减速器。在第一级,采用具有各向异性卷积核的改进的3D U-Net模型来检测初始候选者。与传统的滑动窗策略相比,改进的3D U-Net可以避免大量的冗余计算,并通过采用全卷积神经网络(FCN)的密集推断显着加速检测过程。在第二级,提出了一种基于多尺度多视图卷积神经网络(MSMV-Net)的方法,用于通过将3D卷的多尺度视图送入多个2D卷积神经网络(CNN)的多个流(CNN),这可以充分利用空间上下文信息以及适合不同的尺寸。在神经元的多个3D生物医学图像上的实验,视网膜血管和支气管确认所提出的3D分支点检测方法优于其他最先进的检测方法,并且有助于基于图形的或基于种子的重建方法。

著录项

  • 来源
    《IEEE Transactions on Medical Imaging》 |2020年第4期|1195-1205|共11页
  • 作者单位

    Hunan Univ Coll Elect & Informat Engn Changsha 410082 Hunan Peoples R China|Natl Engn Lab Robot Visual Percept & Control Tech Changsha 410082 Hunan Peoples R China;

    Hunan Univ Coll Elect & Informat Engn Changsha 410082 Hunan Peoples R China|Natl Engn Lab Robot Visual Percept & Control Tech Changsha 410082 Hunan Peoples R China;

    Hunan Univ Coll Elect & Informat Engn Changsha 410082 Hunan Peoples R China|Natl Engn Lab Robot Visual Percept & Control Tech Changsha 410082 Hunan Peoples R China;

    Hunan Univ Coll Elect & Informat Engn Changsha 410082 Hunan Peoples R China|Natl Engn Lab Robot Visual Percept & Control Tech Changsha 410082 Hunan Peoples R China;

    Allen Inst Brain Sci Seattle WA 98109 USA|Southeast Univ Allen Inst Joint Ctr Nanjing 210096 Peoples R China;

    Hunan Univ Coll Elect & Informat Engn Changsha 410082 Hunan Peoples R China|Natl Engn Lab Robot Visual Percept & Control Tech Changsha 410082 Hunan Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Branch points; neuron reconstruction; convolutional neural networks cascade;

    机译:分支点;神经元重建;卷积神经网络级联;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号