首页> 外文期刊>IEEE Transactions on Medical Imaging >Learning New Parts for Landmark Localization in Whole-Body CT Scans
【24h】

Learning New Parts for Landmark Localization in Whole-Body CT Scans

机译:在全身CT扫描中学习具有里程碑意义的本地化的新零件

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The goal of this work is to reliably and accurately localize anatomical landmarks in 3-D computed tomography scans, particularly for the deformable registration of whole-body scans, which show huge variation in posture, and the spatial distribution of anatomical features. Parts-based graphical models (GM) have shown attractive properties for this task because they capture naturally anatomical relationships between landmarks. Unfortunately, standard GMs are learned from manually annotated training images and the quantity of landmarks is limited by the high cost of expert annotation. We propose a novel method that automatically learns new corresponding landmarks from a database of 3-D whole-body CT scans, using a limited initial set of expert-labeled ground-truth landmarks. The newly learned landmarks, called B-landmarks, are used to build enriched GMs. We compare our method of deformable registration based on such GM landmarks to a conventional deformable registration method and to a “baseline” state-of-the-art GM. The results show our method finds new relevant anatomical correspondences and improves by up to 35% the matching accuracy of highly variable skeletal and soft-tissue landmarks of clinical interest.
机译:这项工作的目的是在3D计算机断层扫描中可靠,准确地定位解剖学界标,尤其是对全身扫描的可变形配准而言,这表明姿势和解剖特征的空间分布存在巨大差异。基于零件的图形模型(GM)已显示出此任务的诱人特性,因为它们捕获了地标之间的自然解剖关系。不幸的是,标准GM是从手动注释的训练图像中学习的,而地标的数量受到专家注释的高昂费用的限制。我们提出了一种新颖的方法,可以使用有限的初始一组专家标记的地面真相地标,从3-D全身CT扫描数据库中自动学习新的相应地标。新近学习的地标,称为B-地标,用于构建丰富的GM。我们将基于此类GM标志的可变形配准方法与传统的可变形配准方法和“基线”最新GM进行了比较。结果表明,我们的方法发现了新的相关解剖学对应关系,并将具有临床意义的高度可变的骨骼和软组织标志物的匹配精度提高了35%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

开通会员

免费获取本篇文献

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号