首页> 外文期刊>IEEE Transactions on Medical Imaging >Cardiac Phase Detection in Echocardiograms With Densely Gated Recurrent Neural Networks and Global Extrema Loss
【24h】

Cardiac Phase Detection in Echocardiograms With Densely Gated Recurrent Neural Networks and Global Extrema Loss

机译:密集门控循环神经网络和整体极值丢失在超声心动图中的心脏相位检测。

获取原文
获取原文并翻译 | 示例

摘要

Accurate detection of end-systolic (ES) and end-diastolic (ED) frames in an echocardiographic cine series can be difficult but necessary pre-processing step for the development of automatic systems to measure cardiac parameters. The detection task is challenging due to variations in cardiac anatomy and heart rate often associated with pathological conditions. We formulate this problem as a regression problem and propose several deep learning-based architectures that minimize a novel global extrema structured loss function to localize the ED and ES frames. The proposed architectures integrate convolution neural networks (CNNs)-based image feature extraction model and recurrent neural networks (RNNs) to model temporal dependencies between each frame in a sequence. We explore two CNN architectures: DenseNet and ResNet, and four RNN architectures: long short-term memory, bi-directional LSTM, gated recurrent unit (GRU), and Bi-GRU, and compare the performance of these models. The optimal deep learning model consists of a DenseNet and GRU trained with the proposed loss function. On average, we achieved 0.20 and 1.43 frame mismatch for the ED and ES frames, respectively, which are within reported inter-observer variability for the manual detection of these frames.
机译:在超声心动图电影系列中准确检测收缩末期(ES)和舒张末期(ED)框架可能很困难,但对于开发用于测量心脏参数的自动系统来说,这是必要的预处理步骤。由于经常与病理状况相关的心脏解剖结构和心率变化,检测任务具有挑战性。我们将此问题公式化为回归问题,并提出了几种基于深度学习的体系结构,这些体系结构最小化了一种新颖的全局极值结构损失函数来定位ED和ES框架。提出的体系结构集成了基于卷积神经网络(CNN)的图像特征提取模型和递归神经网络(RNN),以对序列中每个帧之间的时间依赖性进行建模。我们探索了两种CNN体系结构:DenseNet和ResNet,以及四种RNN体系结构:长期短期记忆,双向LSTM,门控循环单元(GRU)和Bi-GRU,并比较了这些模型的性能。最佳深度学习模型由DenseNet和GRU组成,并通过建议的损失函数进行训练。平均而言,对于ED和ES帧,我们分别实现了0.20和1.43帧不匹配,这在报告的观察者间可手动检测这些帧的变异性之内。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号