首页> 外文期刊>Medical Imaging, IEEE Transactions on >Large Margin Local Estimate With Applications to Medical Image Classification
【24h】

Large Margin Local Estimate With Applications to Medical Image Classification

机译:大边距局部估计及其在医学图像分类中的应用

获取原文
获取原文并翻译 | 示例

摘要

Medical images usually exhibit large intra-class variation and inter-class ambiguity in the feature space, which could affect classification accuracy. To tackle this issue, we propose a new Large Margin Local Estimate (LMLE) classification model with sub-categorization based sparse representation. We first sub-categorize the reference sets of different classes into multiple clusters, to reduce feature variation within each subcategory compared to the entire reference set. Local estimates are generated for the test image using sparse representation with reference subcategories as the dictionaries. The similarity between the test image and each class is then computed by fusing the distances with the local estimates in a learning-based large margin aggregation construct to alleviate the problem of inter-class ambiguity. The derived similarities are finally used to determine the class label. We demonstrate that our LMLE model is generally applicable to different imaging modalities, and applied it to three tasks: interstitial lung disease (ILD) classification on high-resolution computed tomography (HRCT) images, phenotype binary classification and continuous regression on brain magnetic resonance (MR) imaging. Our experimental results show statistically significant performance improvements over existing popular classifiers.
机译:医学图像通常在特征空间中表现出较大的类内差异和类间歧义,这可能会影响分类准确性。为解决此问题,我们提出了一种新的大边际局部估计(LMLE)分类模型,该模型具有基于子分类的稀疏表示。我们首先将不同类别的参考集细分为多个群集,以与整个参考集相比减少每个子类别内的特征变化。使用参考子类别作为字典的稀疏表示为测试图像生成局部估计。然后,通过将距离与局部估计值融合在基于学习的大余量聚合构造中以减轻类间歧义性的问题,来计算测试图像与每个类之间的相似性。最终得出的相似性最终用于确定类标签。我们证明了我们的LMLE模型通常适用于不同的成像方式,并将其应用于以下三个任务:高分辨率计算机断层扫描(HRCT)图像上的间质性肺疾病(ILD)分类,表型二进制分类以及对脑磁共振的连续回归( MR)成像。我们的实验结果表明,与现有的流行分类器相比,统计上的性能有了显着提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号