首页> 外文期刊>IEEE Transactions on Magnetics >Energy-Efficient Computing With Probabilistic Magnetic Bits—Performance Modeling and Comparison Against Probabilistic CMOS Logic
【24h】

Energy-Efficient Computing With Probabilistic Magnetic Bits—Performance Modeling and Comparison Against Probabilistic CMOS Logic

机译:具有概率磁性位的节能计算—性能建模和与概率CMOS逻辑的比较

获取原文
获取原文并翻译 | 示例
       

摘要

This paper focuses on the design, performance modeling, and evaluation of probabilistic logic using superparamagnetic nanomagnets for which there exists a strong interplay between deterministic dynamics and intrinsic thermal noise. The switching element in the spin domain is chosen as the giant spin-Hall effect (GSHE) device that operates based on the dipolar coupling phenomenon in a two-magnet system to achieve low-energy (≈ 1.3 fJ/b) and low-power (≈ 0.5 μW) switching characteristics. The use of spin currents on the order of a few tens of mA/μm2 in the subcritical regime to operate the GSHE device yields nondeterministic switching behavior with probability of correctness less than 100%. Therefore, the proposed technique allows us to trade off circuit accuracy for tremendous reduction in energy and power dissipation. In this paper, we identify the required dimensions and material parameters of the read-write units to ensure robust magnetic dipolar coupling for reliable operation of the GSHE switch. Then, through Monte Carlo simulations, we evaluate the probabilistic switching behavior of the GSHE switch as a function of the input spin current amplitude and pulsewidth for various orientations of the magnetization vectors. The delay of the GSHE switch is quantified using a probability distribution function owing to the randomness imparted to the dynamics by intrinsic thermal noise of the nanomagnets. The relationship between the probability of correctness and the energy dissipation of the GSHE switch is quantified. The results are extended to evaluate the performance and circuit error rate of complex logic gates, such as NAND and NOR, constructed using the GSHE switch. It is shown that unlike the probabilistic CMOS (PCMOS) logic, the circuit error rate in the GSHE logic becomes a function of the input vector combination and the prior state of the switch. These nuances are captured in the compact model of the circuit error rate of multiple-input GSHE logic developed in this paper. The performance of the probabilistic GSHE logic is compared with that of PCMOS logic at the 14 nm technology node. Since the noise generation process in PCMOS logic has a limited bandwidth of tens of megahertz and consumes tens of microwatt power, the peripheral circuitry becomes prohibitive. By utilizing the inherent thermal stochasticity, nanomagnets provide a clear advantage to implement probabilistic computing platform targeted toward error-tolerant applications such as those from the image processing and machine learning domains.
机译:本文重点研究使用超顺磁性纳米磁体的概率逻辑的设计,性能建模和评估,为此,确定性动力学与固有热噪声之间存在很强的相互作用。自旋域中的开关元件被选作巨型自旋霍尔效应(GSHE)器件,该器件基于双磁体系统中的偶极耦合现象工作,以实现低能量(≈1.3 fJ / b)和低功耗(≈0.5μW)开关特性。在亚临界状态下使用几十mA /μm 2 量级的自旋电流来操作GSHE器件会产生不确定的开关行为,正确性的可能性小于100%。因此,所提出的技术使我们可以权衡电路精度,以极大地减少能量和功耗。在本文中,我们确定了读写单元所需的尺寸和材料参数,以确保牢固的磁偶极耦合,从而使GSHE开关可靠运行。然后,通过蒙特卡洛模拟,我们针对磁化矢量的各种方向,根据输入自旋电流幅度和脉冲宽度来评估GSHE开关的概率开关行为。由于纳米磁体的固有热噪声赋予动力学的随机性,因此使用概率分布函数来量化GSHE开关的延迟。量化正确率与GSHE开关的能量耗散之间的关系。结果扩展到评估使用GSHE开关构造的复杂逻辑门(例如NAND和NOR)的性能和电路错误率。结果表明,与概率性CMOS(PCMOS)逻辑不同,GSHE逻辑中的电路错误率成为输入矢量组合和开关先前状态的函数。这些细微差别被捕获在本文开发的多输入GSHE逻辑电路错误率的紧凑模型中。在14 nm技术节点上,将概率GSHE逻辑的性能与PCMOS逻辑的性能进行了比较。由于PCMOS逻辑中的噪声生成过程具有数十兆赫兹的有限带宽,并且消耗数十微瓦的功率,因此外围电路变得无法使用。通过利用固有的热随机性,纳米磁体提供了明显的优势来实现针对容错应用(例如来自图像处理和机器学习领域的应用)的概率计算平台。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号