首页> 外文期刊>Magnetics, IEEE Transactions on >Hysteresis Model of Magnetically Controlled Shape Memory Alloy Based on a PID Neural Network
【24h】

Hysteresis Model of Magnetically Controlled Shape Memory Alloy Based on a PID Neural Network

机译:基于PID神经网络的磁控形状记忆合金磁滞模型。

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Magnetically controlled shape memory alloys are a new kind of smart material that can be used in microdisplacement and micropositioning applications. However, the hysteresis nonlinearity of this material is an obstacle in achieving high precision accuracy. To describe the hysteresis nonlinearity, a modeling method based on a proportional-integral-differential (PID) neural network is proposed. Using backpropagation training algorithms to train weights, this model can better approximate the main and minor hysteresis loops by adding a nonlinear function in the input layer. The simulation results show that the maximum prediction error of the PID neural network model is 0.0073 mm when the given input signal results in a major hysteresis loop, and the maximum prediction error of the PID neural network model is 0.0101 mm when the given input signal results in both major and minor hysteresis loops. Error calculations further demonstrate the effectiveness of this modeling method.
机译:磁控形状记忆合金是一种新型的智能材料,可用于微位移和微定位应用。但是,这种材料的磁滞非线性是实现高精度精度的障碍。为了描述磁滞非线性,提出了一种基于比例积分微分(PID)神经网络的建模方法。通过使用反向传播训练算法来训练权重,该模型可以通过在输入层中添加非线性函数来更好地近似主磁滞环和次磁滞环。仿真结果表明,在给定输入信号产生较大磁滞回线的情况下,PID神经网络模型的最大预测误差为0.0073 mm;在给定输入信号结果的情况下,PID神经网络模型的最大预测误差为0.0101 mm。在主要和次要磁滞回线中。误差计算进一步证明了该建模方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号