机译:用于大型多标签文本分类的分类分类分类和注意力图胶囊RCNN
Beihang Univ Beijing Adv Innovat Ctr Big Data & Brain Comp Beijing 100083 Peoples R China|Beihang Univ State Key Lab Software Dev Environm Beijing 100083 Peoples R China;
Beihang Univ Beijing Adv Innovat Ctr Big Data & Brain Comp Beijing 100083 Peoples R China|Beihang Univ State Key Lab Software Dev Environm Beijing 100083 Peoples R China;
Nanjing Univ Aeronaut & Astronaut Coll Comp Sci & Technol Nanjing 211106 Peoples R China;
Coordinat Ctr China Natl Comp Network Emergency Response Tech Team Beijing 100029 Peoples R China;
Beihang Univ Beijing Adv Innovat Ctr Big Data & Brain Comp Beijing 100083 Peoples R China|Beihang Univ State Key Lab Software Dev Environm Beijing 100083 Peoples R China;
Univ Leeds Sch Comp Leeds LS2 9JT W Yorkshire England;
Beihang Univ Beijing Adv Innovat Ctr Big Data & Brain Comp Beijing 100083 Peoples R China|Beihang Univ State Key Lab Software Dev Environm Beijing 100083 Peoples R China;
Univ Illinois Dept Comp Sci Chicago IL 60607 USA;
Lehigh Univ Dept Comp Sci & Engn Bethlehem PA 18015 USA;
Semantics; Deep learning; Feature extraction; Computational modeling; Taxonomy; Task analysis; Data models; Multi-label classification; document modeling; graph rcnn; attention network; capsule network; taxonomy embedding;
机译:基于分层图形变换器的大型多标签文本分类的深度学习模型
机译:InphyNet:利用基于关注的多任务复发网络,用于多标签物理文本分类
机译:基于历史的SEQ2SEQ模型中的多标签文本分类模型
机译:胶囊网络对文本进行分层多标签分类
机译:归纳多层标签域,重点关注文本分类。
机译:分析大型多标签文本分类管道的运动部分:生物医学文章索引的经验
机译:基于分层图形变换器的大型多标签文本分类的深度学习模型