机译:利用隐含的相对标签 - 重要信息,以实现有效的多标签学习
Southeast Univ Sch Comp Sci & Engn Nanjing 210096 Peoples R China|Southeast Univ Minist Educ Key Lab Comp Network & Informat Integrat Nanjing Peoples R China;
Southeast Univ Sch Comp Sci & Engn Nanjing 210096 Peoples R China|Southeast Univ Minist Educ Key Lab Comp Network & Informat Integrat Nanjing Peoples R China;
Southeast Univ Sch Comp Sci & Engn Nanjing 210096 Peoples R China|Southeast Univ Minist Educ Key Lab Comp Network & Informat Integrat Nanjing Peoples R China;
Southeast Univ Sch Comp Sci & Engn Nanjing 210096 Peoples R China|Southeast Univ Minist Educ Key Lab Comp Network & Informat Integrat Nanjing Peoples R China|Baidu Inc Business Grp Nat Language Proc Beijing Peoples R China;
Southeast Univ Sch Comp Sci & Engn Nanjing 210096 Peoples R China|Southeast Univ Minist Educ Key Lab Comp Network & Informat Integrat Nanjing Peoples R China;
Machine learning; multi-label learning; relative labeling-importance; label distribution; regularization;
机译:利用标签特定的判别映射功能进行多标签学习
机译:多标签学习的有效主动学习策略
机译:基于数据引力模型的有效懒惰学习算法用于多标签学习
机译:利用隐含的相对标签 - 重要信息,以实现有效的多标签学习
机译:在表示学习中利用标签信息进行多标签文本分类
机译:通过多标签学习和集成学习预测药物副作用
机译:利用标签特定的判别映射特征,用于多标签学习