首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >DynaMo: Dynamic Community Detection by Incrementally Maximizing Modularity
【24h】

DynaMo: Dynamic Community Detection by Incrementally Maximizing Modularity

机译:发电机:通过逐渐最大化模块化的动态社区检测

获取原文
获取原文并翻译 | 示例

摘要

Community detection is of great importance for online social network analysis. The volume, variety and velocity of data generated by today's online social networks are advancing the way researchers analyze those networks. For instance, real-world networks, such as Facebook, LinkedIn and Twitter, are inherently growing rapidly and expanding aggressively over time. However, most of the studies so far have been focusing on detecting communities on the static networks. It is computationally expensive to directly employ a well-studied static algorithm repeatedly on the network snapshots of the dynamic networks. We propose DynaMo, a novel modularity-based dynamic community detection algorithm, aiming to detect communities of dynamic networks as effective as repeatedly applying static algorithms but in a more efficient way. DynaMo is an adaptive and incremental algorithm, which is designed for incrementally maximizing the modularity gain while updating the community structure of dynamic networks. In the experimental evaluation, a comprehensive comparison has been made among DynaMo, Louvain (static) and 5 other dynamic algorithms. Extensive experiments have been conducted on 6 real-world networks and 10,000 synthetic networks. Our results show that DynaMo outperforms all the other 5 dynamic algorithms in terms of the effectiveness, and is 2 to 5 times (by average) faster than Louvain algorithm.
机译:社区检测对于在线社交网络分析非常重要。今天在线社交网络产生的数据的数量,品种和速度正在推进研究人员分析这些网络的方式。例如,现实世界网络(例如Facebook,LinkedIn和Twitter)本身正在快速发展并随着时间的推移积极地扩展。然而,到目前为止的大多数研究一直专注于检测静态网络上的社区。在动态网络的网络快照上重复使用良好地学习的静态算法,计算昂贵昂贵。我们提出了一种新型基于模块化的动态群落检测算法的发电机,旨在检测动态网络的社区,如重复应用静态算法,但以更有效的方式有效。 Dynamo是一种自适应和增量算法,它被设计用于递增地最大化模块化增益,同时更新动态网络的社区结构。在实验评价中,发电机,Louvain(静态)和其他5个动态算法中的全面比较。已经在6个现实网络和10,000个合成网络上进行了广泛的实验。我们的结果表明,在有效性方面,发电机效果优于所有其他5个动态算法,比Louvain算法更快(平均)2至5次(平均)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号