首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Signed-PageRank: An Efficient Influence Maximization Framework for Signed Social Networks
【24h】

Signed-PageRank: An Efficient Influence Maximization Framework for Signed Social Networks

机译:签名 - PageRank:签名社交网络的有效影响最大化框架

获取原文
获取原文并翻译 | 示例

摘要

Influence maximization in social networks is of great importance for marketing new products. Signed social networks with both positive (friends) and negative (foes) relationships pose new challenges and opportunities, since the influence of negative relationships can be leveraged to promote information propagation. In this paper, we study the problem of influence maximization for advertisement recommendation in signed social networks. We propose a new framework to characterize the information propagation process in signed social networks, which models the dynamics of individuals' beliefs and attitudes towards the advertisement based on recommendations from both positive and negative neighbours. To achieve influence maximization in signed social networks, we design a novel Signed-PageRank (SPR) algorithm, which selects the initial seed nodes by jointly considering their positive and negative connections with the rest of the network. Our extensive experimental results confirm that our proposed SPR algorithm can effectively and efficiently influence a broader range of individuals in the signed social networks than benchmark algorithms on both synthetic and real datasets.
机译:社交网络中的影响最大化对于营销新产品具有重要意义。签署了社交网络与正(朋友)和负(敌人)关系构成了新的挑战和机会,因为可以利用负面关系的影响来促进信息传播。在本文中,我们研究了签署社交网络中广告推荐的影响力的问题。我们提出了一个新的框架,以表征签署的社交网络中的信息传播过程,这些过程在基于来自积极和负邻国的建议的建议模拟个人信仰的动态和对广告的态度。为了实现符号社交网络的影响最大化,我们设计了一种新的签名 - PageRank(SPR)算法,其通过联合考虑与网络其余部分的正负连接来选择初始种子节点。我们广泛的实验结果证实,我们所提出的SCR算法可以有效地和有效地影响符号社交网络中的更广泛的个人,而不是合成和实时数据集的基准算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号