首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Answering Skyline Queries Over Incomplete Data With Crowdsourcing
【24h】

Answering Skyline Queries Over Incomplete Data With Crowdsourcing

机译:用众包回答通过不完整的数据查询的天际线查询

获取原文
获取原文并翻译 | 示例

摘要

Due to the pervasiveness of incomplete data, incomplete data queries are vital in a large number of real-life scenarios. Current models and approaches for incomplete data queries mainly rely on the machine power. In this paper, we study the problem of skyline queries over incomplete data with crowdsourcing. We propose a novel query framework, termed as BayesCrowd, which takes into account the data correlation using the Bayesian network. We leverage the typical c-table model on incomplete data to represent objects. Considering budget and latency constraints, we present a suite of effective task selection strategies. Moreover, we introduce a marginal utility function to measure the benefit of crowdsourcing one task. In particular, the probability computation of each object being an answer object is at least as hard as #SAT problem. To this end, we propose an adaptive DPLL (i.e., Davis-Putnam-LogemannLoveland) algorithm to speed up the computation. Extensive experiments using both real and synthetic data sets confirm the superiority of BayesCrowd to the state-of-the-art method, in terms of execution time, monetary cost, and latency minimization.
机译:由于不完整数据的普遍性,在大量现实方案中,不完整的数据查询是至关重要的。当前模型和不完整数据查询的方法主要依赖于机器电源。在本文中,我们使用众包来研究对不完整数据的天际线查询。我们提出了一种新的查询框架,称为BayesCrowd,这考虑了使用贝叶斯网络的数据相关性。我们利用典型的C表模型在不完全数据上表示对象。考虑预算和延迟约束,我们提供了一套有效的任务选择策略。此外,我们介绍了边际效用功能,以衡量众包一个任务的益处。特别地,每个对象是答案对象的概率计算至少与#SAT问题一样困难。为此,我们提出了一种自适应DPLL(即,Davis-Putnam-Logemannlovelovel)算法来加快计算。在执行时间,货币成本和延迟最小化方面,使用真实和合成数据集的广泛实验确认了贝叶苏克的优越性,以最新的方法,货币成本和延迟最小化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号