首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Enhanced Privacy Preserving Group Nearest Neighbor Search
【24h】

Enhanced Privacy Preserving Group Nearest Neighbor Search

机译:增强的隐私保留组最近邻搜索

获取原文
获取原文并翻译 | 示例

摘要

Group k-nearest neighbor (kGNN) search allows a group of n mobile users to jointly retrieve k points from a location-based service provider (LSP) that minimizes the aggregate distance to them. We identify four protection objectives in the privacy preserving kGNN search: (i) every user's location should be protected from LSP; (ii) the group's query and the query answer should be protected from LSP; (iii) LSP's private database information should be protected from users; (iv) every user's location should be protected from other users in the group. We design two privacy preserving solutions under two types of threat model to the privacy preserving kGNN search in the full user collusion environment, where any n-1 users in the group may collude to infer the location of the remaining user. Our solutions do not rely on heavy pre-computation on LSP like previous works. Though we consider kGNN, the proposed privacy preserving solutions can be easily adopted to any group query as it treats the query answering (i.e., kGNN) as a black box. Theoretical and experimental analysis suggest that our solutions are highly efficient in both communication cost and user computational cost while incurring some reasonable overhead on LSP.
机译:Group K-Collest邻居(KGNN)搜索允许一组N Mobile用户共同检索来自基于位置的服务提供商(LSP)的P点,从而最大限度地减少与它们的聚合距离。我们在保留kgnn搜索的隐私搜索中确定四个保护目标:(i)应保护每个用户的位置免受LSP的影响; (ii)本集团的查询和查询答案应免受LSP保护; (iii)应保护LSP的私有数据库信息免受用户保护; (iv)应保护每个用户的位置免受该组中的其他用户的保护。我们在完整的用户勾结环境中为隐私保留kgnn搜索的隐私范围设计了两种威胁模型的隐私保存解决方案,其中组中的任何N-1用户都可能委托来推断剩余用户的位置。我们的解决方案不像以前的工作一样依赖于LSP的重预先计算。虽然我们考虑kgnn,但是可以轻松地采用所提出的隐私保存解决方案,因为它将查询应答(即,kgnn)视为黑色框。理论和实验分析表明,我们的解决方案在通信成本和用户计算成本中高效,同时在LSP上产生了一些合理的开销。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号