首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >A Comparative Study of Consistent Snapshot Algorithms for Main-Memory Database Systems
【24h】

A Comparative Study of Consistent Snapshot Algorithms for Main-Memory Database Systems

机译:主要内存数据库系统一致快照算法的比较研究

获取原文
获取原文并翻译 | 示例

摘要

In-memory databases (IMDBs) are gaining increasing popularity in big data applications, where clients commit updates intensively. Specifically, it is necessary for IMDBs to have efficient snapshot performance to support certain special applications (e.g., consistent checkpoint, HTAP). Formally, the in-memory consistent snapshot problem refers to taking an in-memory consistent time-in-point snapshot with the constraints that 1) clients can read the latest data items and 2) any data item in the snapshot should not be overwritten. Various snapshot algorithms have been proposed in academia to trade off throughput and latency, but industrial IMDBs such as Redis adhere to the simple fork algorithm. To understand this phenomenon, we conduct comprehensive performance evaluations on mainstream snapshot algorithms. Surprisingly, we observe that the simple fork algorithm indeed outperforms the state-of-the-arts in update-intensive workload scenarios. On this basis, we identify the drawbacks of existing research and propose two lightweight improvements. Extensive evaluations on synthetic data and Redis show that our lightweight improvements yield better performance than fork, the current industrial standard, and the representative snapshot algorithms from academia. Finally, we have opensourced the implementation of all the above snapshot algorithms so that practitioners are able to benchmark the performance of each algorithm and select proper methods for different application scenarios.
机译:内存数据库(IMDB)正在增加大数据应用中的普及,客户端提交强烈更新。具体地,IMDB是有必要具有有效的快照性能来支持某些特殊应用程序(例如,一致的检查点,HTAP)。正式,内存中的一致快照问题是指与1)客户端可以读取最新数据项和2)不应覆盖快照中的任何数据项的内存的内存中的内存时间内快照。在学术界提出了各种快照算法来折衷吞吐量和延迟,但是Redis等工业IMDB遵守简单的Fork算法。要了解这种现象,我们对主流快照算法进行全面的绩效评估。令人惊讶的是,我们观察到简单的Fork算法确实优于更新密集型工作负载方案中的最先进。在此基础上,我们确定了现有研究的缺点,并提出了两个轻量级改进。对合成数据和REDIS的广泛评估表明,我们的轻量级改善比Fork,当前工业标准和学术界的代表快照算法产生更好的性能。最后,我们已经开启了所有上述快照算法的实现,以便从业者能够基准测试每种算法的性能,并为不同的应用方案选择正确的方法。

著录项

  • 来源
  • 作者单位

    Northeastern Univ China Dept Comp Sci Shenyang 100819 Peoples R China;

    Beging Inst Technol Dept Comp Sci Beijing 100081 Peoples R China;

    Northeastern Univ China Dept Comp Sci Shenyang 100819 Peoples R China|Nanjing Univ Dept State Key Lab Novel Software Technol Sheng 210008 Jiangsu Peoples R China;

    Northeastern Univ China Dept Comp Sci Shenyang 100819 Peoples R China;

    Hong Kong Univ Sci & Technol Dept Comp Sci & Engn Hong Kong Peoples R China;

    Kent State Univ Dept Comp Sci Kent OH 44240 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    In-memory database systems; snapshot algorithms; checkpoints; HTAP;

    机译:内存数据库系统;快照算法;检查站;HTAP;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号