首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Automating IoT Data-Intensive Application Allocation in Clustered Edge Computing
【24h】

Automating IoT Data-Intensive Application Allocation in Clustered Edge Computing

机译:自动化集群边缘计算中的IOT数据密集型应用程序分配

获取原文
获取原文并翻译 | 示例

摘要

Enabling data processing at the network edge, as close to the actual source of data as possible, is a challenging, yet realistic goal to be achieved by the Internet of Things (IoT), which still primarily relies on the Cloud for data processing. By further extending the Fog and Edge computing principles, recent research advancements enabled aggregation of computing resources from multiple edge devices to support data-intensive task processing using Big Data clustering middleware. The use of these existing solutions, however, is hindered by the heterogeneous, dynamic, mobile, resource-constrained, and time-critical nature of loT ecosystems. More specifically, a particularly challenging goal is to discover, select, and cluster suitable edge devices - on the one hand, and decompose and allocate data-intensive tasks with respect to discovered resources - on the other. To address this challenge, this paper introduces a novel decentralized architecture for clustering heterogeneous edge devices and executing data-intensive loT workflows. The proposed approach first breaks down a complex workflow into simpler tasks, then discovers and selects suitable edge devices, and finally allocates the tasks to the selected nodes, connecting them to recompose the original workflow. The proposed approach benefits from an intelligent mapping algorithm that takes into account available cluster resources and processing demands to efficiently allocate fine-grained tasks to selected nodes. To support the clusterisation process, the proposed solution relies on a unified semantic knowledge base that provides a common vocabulary of terms for modelling task requirements and edge device properties, as well as enables automated task grouping and match-making for device discovery and selection, using built-in reasoning capabilities.
机译:在网络边缘启用数据处理,尽可能接近实际数据源,是由事物互联网(物联网)实现的具有挑战性,但逼真的目标,其仍然依赖于用于数据处理的云。通过进一步扩展雾和边缘计算原理,最近的研究进步使得能够从多个边缘设备聚合计算资源,以支持使用大数据聚类中间件的数据密集型任务处理。然而,这些现有解决方案的使用受到许多生态系统的异构,动态,移动,资源受限和时间关键性质的阻碍。更具体地说,一个特别具有挑战性的目标是发现,选择和集群合适的边缘设备 - 一方面,并​​分解并分解关于发现资源的数据密集型任务 - 另一方面。为了解决这一挑战,本文介绍了一种用于聚类异构边缘设备的新型分散体系结构,并执行数据密集型批次工作流程。该方法首先将复杂的工作流程分解为更简单的任务,然后发现并选择合适的边缘设备,并最终将任务分配给所选节点,连接它们以重新显示原始工作流程。所提出的方法从智能映射算法中获益,该算法考虑了可用的群集资源和处理要求,以便将细粒度的任务有效地分配给所选节点。为了支持群集进程,所提出的解决方案依赖于统一的语义知识库,该基础提供了用于建模任务要求和边缘设备属性的常见词汇,以及使自动任务分组和匹配为设备发现和选择,使用内置推理能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号