首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Fast Discrete Collaborative Multi-Modal Hashing for Large-Scale Multimedia Retrieval
【24h】

Fast Discrete Collaborative Multi-Modal Hashing for Large-Scale Multimedia Retrieval

机译:用于大型多媒体检索的快速离散协作多模态散列

获取原文
获取原文并翻译 | 示例

摘要

Many achievements have been made on learning to hash for uni-modal and cross-modal retrieval. However, it is still an unsolved problem that how to directly and efficiently learn discriminative discrete hash codes for the multimedia retrieval, where both query and database samples are represented with heterogeneous multi-modal features. With this motivation, we propose a Fast Discrete Collaborative Multi-modal Hashing (FDCMH) method in this paper. We first propose an efficient collaborative multi-modal mapping that first transforms heterogeneous multi-modal features into the unified factors to exploit the complementarity of multi-modal features and preserve the semantic correlations in multiple modalities with linear computation and space complexity. Such shared factors also bridge the heterogeneous modality gap and remove the inter-modality redundancy. Further, we develop an asymmetric hashing learning module to simultaneously correlate the learned hash codes with low-level data distribution and high-level semantics. In particular, this design could avoid the challenging symmetric semantic matrix factorization and O(n(2)) memory cost (n is the number of training samples). It can support both computation and memory efficient discrete hash optimization. Experiments on several public multimedia retrieval datasets demonstrate the superiority of the proposed approach compared with state-of-the-art hashing techniques, in terms of both model learning efficiency and retrieval accuracy.
机译:为学习哈希进行了许多成就,以获得单模和跨模型检索。然而,它仍然是一种未解决的问题,即如何直接和有效地学习多媒体检索的判别离散哈希代码,其中查询和数据库样本都以异构的多模态特征表示。通过这种动机,我们在本文中提出了一种快速分离的协作多模态散列(FDCMH)方法。我们首先提出了一种有效的协作多模型映射,首先将异构多模态特征转换为统一的因子,以利用多模态特征的互补性,并在具有线性计算和空间复杂度的多种模式中保持语义相关性。这种共享因素还弥合了异质模态差距并消除了模特间冗余。此外,我们开发不对称的散列学习模块,以同时将学习的哈希代码与低级数据分布和高级语义相关联。特别地,这种设计可以避免具有挑战性的对称语义矩阵分解,o(n(2))记忆成本(n是训练样本的数量)。它可以支持计算和内存有效的离散散列优化。关于既有型号学习效率和检索准确性,展示了拟议方法的优越性,展示了所提出的方法的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号