首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >K-SPIN: Efficiently Processing Spatial Keyword Queries on Road Networks
【24h】

K-SPIN: Efficiently Processing Spatial Keyword Queries on Road Networks

机译:K-Spin:有效处理道路网络上的空间关键字查询

获取原文
获取原文并翻译 | 示例

摘要

A significant proportion of all search volume consists of local searches. As a result, search engines must be capable of finding relevant results combining both spatial proximity and textual relevance with high query throughput. We observe that existing techniques answering these spatial keyword queries use keyword aggregated indexing, which has several disadvantages on road networks. We propose K-SPIN, a versatile framework that instead uses keyword separated indexing to delay and avoid expensive operations. At first glance, this strategy appears to have impractical pre-processing costs. However, by exploiting several useful observations, we make the indexing cost not only viable but also light-weight. For example, we propose a novel $ho$rho-Approximate Network Voronoi Diagram (NVD) with one order of magnitude less space cost than exact NVDs. By carefully exploiting features of the K-SPIN framework, our query algorithms are up to two orders of magnitude more efficient than the state-of-the-art as shown in our experimental investigation on various queries, parameter settings, and real road network and keyword datasets.
机译:所有搜索卷的大量比例包括本地搜索。因此,搜索引擎必须能够找到与高查询吞吐量的空间接近度和文本相关性的相关结果。我们观察到现有技术接听这些空间关键字查询使用关键字聚合索引,这在道路网络上具有若干缺点。我们提出K-Spin,一个多功能框架,而是使用关键字分离的索引来延迟并避免昂贵的操作。乍一看,这种策略似乎具有不切实际的预处理成本。然而,通过利用几种有用的观察结果,我们不仅使索引成本不仅可以是可行的,而且是重量轻。例如,我们提出了一种新颖的$ Rho Rho近似网络voronoi图(NVD),空间成本比精确的NVDS更少的数量级。通过仔细利用K-Spin框架的特征,我们的查询算法高于最先进的效率高达两个数量级,如我们对各种查询,参数设置和真正的道路网络的实验调查所示关键字数据集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号