首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >A multilayered self-organizing artificial neural network for invariant pattern recognition
【24h】

A multilayered self-organizing artificial neural network for invariant pattern recognition

机译:多层自组织人工神经网络用于不变模式识别

获取原文
获取原文并翻译 | 示例

摘要

An artificial neural network that self-organizes to recognize various images presented as a training set is described. One application of the network uses multiple functionally disjoint stages to provide pattern recognition that is invariant to translations of the object in the image plane. The general form of the network uses three stages that perform the functionally disjoint tasks of preprocessing, invariance, and recognition. The preprocessing stage is a single layer of processing elements that performs dynamic thresholding and intensity scaling. The invariance stage is a multilayered connectionist implementation of a modified Walsh-Hadamard transform used for generating an invariant representation of the image. The recognition stage is a multilayered self-organizing neural network that learns to recognize the representation of the input image generated by the invariance stage. The network can successfully self-organize to recognize objects without regard to the location of the object in the image field and has some resistance to noise and distortions.
机译:描述了一种自组织的人工神经网络,可以识别作为训练集呈现的各种图像。网络的一种应用使用多个功能上不相交的阶段来提供模式识别,该模式识别对于图像平面中对象的平移是不变的。网络的一般形式使用三个阶段来执行预处理,不变性和识别的功能分离任务。预处理阶段是执行动态阈值化和强度缩放的单层处理元素。不变阶段是改进的Walsh-Hadamard变换的多层连接主义实现,用于生成图像的不变表示。识别阶段是一个多层的自组织神经网络,它学会识别由不变阶段生成的输入图像。该网络可以成功地自我组织以识别物体,而无需考虑物体在像场中的位置,并且具有一定的抗噪和抗变形能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号