We give a sufficient condition under which the least fixpoint of the equation X=a+f(X)X equals the least fixpoint of the equation X=a+f(a)X. We then apply that condition to recursive logic programs containing chain rules: we translate it into a sufficient condition under which a recursive logic program containing n/spl ges/2 recursive calls in the bodies of the rules is equivalent to a linear program containing at most one recursive call in the bodies of the rules. We conclude with a discussion comparing our condition with the other approaches to linearization studied in the literature.
展开▼
机译:我们给出了一个充分的条件,在该条件下,方程X = a + f(X)X的最小固定点等于方程X = a + f(a)X的最小固定点。然后,我们将该条件应用于包含链式规则的递归逻辑程序:将其转化为充分条件,在该条件下,规则主体中包含n / spl ges / 2递归调用的递归逻辑程序等效于最多包含一个线性程序规则主体中的一个递归调用。最后,我们进行了讨论,将我们的条件与文献中研究的其他线性化方法进行了比较。
展开▼