首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Semantic query optimization for query plans of heterogeneous multidatabase systems
【24h】

Semantic query optimization for query plans of heterogeneous multidatabase systems

机译:异构多数据库系统查询计划的语义查询优化

获取原文
获取原文并翻译 | 示例

摘要

New applications of information systems need to integrate a large number of heterogeneous databases over computer networks. Answering a query in these applications usually involves selecting relevant information sources and generating a query plan to combine the data automatically. As significant progress has been made in source selection and plan generation, the critical issue has been shifting to query optimization. This paper presents a semantic query optimization (SQO) approach to optimizing query plans of heterogeneous multidatabase systems. This approach provides global optimization for query plans as well as local optimization for subqueries that retrieve data from individual database sources. An important feature of our local optimization algorithm is that we prove necessary and sufficient conditions to eliminate an unnecessary join in a conjunctive query of arbitrary join topology. This feature allows our optimizer to utilize more expressive relational rules to provide a wider range of possible optimizations than previous work in SQO. The local optimization algorithm also features a new data structure called AND-OR implication graphs to facilitate the search for optimal queries. These features allow the global optimization to effectively use semantic knowledge to reduce the data transmission cost. We have implemented this approach in the PESTO (Plan Enhancement by SemanTic Optimization) query plan optimizer as a part of the SIMS information mediator. Experimental results demonstrate that PESTO can provide significant savings in query execution cost over query plan execution without optimization.
机译:信息系统的新应用需要通过计算机网络集成大量异构数据库。在这些应用程序中回答查询通常涉及选择相关信息源并生成查询计划以自动组合数据。由于在源选择和计划生成方面已经取得了重大进展,因此关键的问题已经转移到查询优化上。本文提出了一种语义查询优化(SQO)方法来优化异构多数据库系统的查询计划。这种方法为查询计划提供了全局优化,还为从单个数据库源检索数据的子查询提供了局部优化。我们的局部优化算法的一个重要特征是,我们证明了在任意联接拓扑的联合查询中消除不必要联接的必要条件和充分条件。此功能使我们的优化器可以利用更具表现力的关系规则来提供比SQO先前的工作更广泛的可能优化。局部优化算法还具有称为AND-OR蕴涵图的新数据结构,以方便搜索最佳查询。这些功能使全局优化可以有效地使用语义知识来减少数据传输成本。作为SIMS信息中介器的一部分,我们已经在PESTO(通过语义优化的计划增强)查询计划优化器中实现了此方法。实验结果表明,与未经优化的查询计划执行相比,PESTO可以大大节省查询执行成本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号