首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >An approach to active spatial data mining based on statistical information
【24h】

An approach to active spatial data mining based on statistical information

机译:一种基于统计信息的主动空间数据挖掘方法

获取原文
获取原文并翻译 | 示例

摘要

Spatial data mining presents new challenges due to the large size of spatial data, the complexity of spatial data types, and the special nature of spatial access methods. Most research in this area has focused on efficient query processing of static data. This paper introduces an active spatial data mining approach that extends the current spatial data mining algorithms to efficiently support user-defined triggers on dynamically evolving spatial data. To exploit the locality of the effect of an update and the nature of spatial data, we employ a hierarchical structure with associated statistical information at the various levels of the hierarchy and decompose the user-defined trigger into a set of subtriggers associated with cells in the hierarchy. Updates are suspended in the hierarchy until their cumulative effect might cause the trigger to fire. It is shown that this approach achieves three orders of magnitude improvement over the naive approach that reevaluate the condition over the database for each update, while both approaches produce the same result without any delay. Moreover, this scheme can support incremental query processing as well.
机译:由于空间数据的大容量,空间数据类型的复杂性以及空间访问方法的特殊性,空间数据挖掘提出了新的挑战。该领域的大多数研究都集中在对静态数据的有效查询处理上。本文介绍了一种主动的空间数据挖掘方法,该方法扩展了当前的空间数据挖掘算法,以有效地支持动态演化的空间数据上的用户定义的触发器。为了利用更新效果的局部性和空间数据的性质,我们采用了在层次结构的各个级别上具有关联统计信息的层次结构,并将用户定义的触发器分解为与该单元格中的单元关联的一组子触发器。层次结构。更新被暂停在层次结构中,直到它们的累积影响可能导致触发触发器。结果表明,与针对每次更新重新评估数据库条件的朴素方法相比,该方法实现了三个数量级的改进,而两种方法均产生相同的结果而没有任何延迟。此外,该方案还可以支持增量查询处理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号