首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Dimensionality reduction in automatic knowledge acquisition: a simple greedy search approach
【24h】

Dimensionality reduction in automatic knowledge acquisition: a simple greedy search approach

机译:自动知识获取中的降维:一种简单的贪婪搜索方法

获取原文
获取原文并翻译 | 示例

摘要

Knowledge acquisition is the process of collecting domain knowledge, documenting the knowledge, and transforming it into a computerized representation. Due to the difficulties involved in eliciting knowledge from human experts, knowledge acquisition was identified as a bottleneck in the development of knowledge-based system. Over the past decades, a number of automatic knowledge acquisition techniques have been developed. However, the performance of these techniques suffers from the so called curse of dimensionality, i.e., difficulties arise when many irrelevant (or redundant) parameters exist. This paper presents a heuristic approach based on statistics and greedy search for dimensionality reduction to facilitate automatic knowledge acquisition. The approach deals with classification problems. Specifically, Chi-square statistics are used to rank the importance of individual parameters. Then, a backward search procedure is employed to eliminate parameters (less important parameters first) that do not contribute to class separability. The algorithm is very efficient and was found to be effective when applied to a variety of problems with different characteristics.
机译:知识获取是收集领域知识,记录知识并将其转换为计算机表示形式的过程。由于难以从人类专家那里获取知识,因此知识获取被认为是开发基于知识的系统的瓶颈。在过去的几十年中,已经开发了许多自动知识获取技术。但是,这些技术的性能受到所谓的维数诅咒的折磨,即,当存在许多不相关的(或冗余的)参数时出现困难。本文提出了一种基于统计和贪婪搜索的启发式方法,用于降维以促进自动知识获取。该方法处理分类问题。具体而言,卡方统计量用于对各个参数的重要性进行排名。然后,使用向后搜索过程来消除对类别可分离性无贡献的参数(首先是不太重要的参数)。该算法非常有效,并且在应用于具有不同特征的各种问题时是有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号