首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Frequent substructure-based approaches for classifying chemical compounds
【24h】

Frequent substructure-based approaches for classifying chemical compounds

机译:基于子结构的频繁分类方法

获取原文
获取原文并翻译 | 示例

摘要

Computational techniques that build models to correctly assign chemical compounds to various classes of interest have many applications in pharmaceutical research and are used extensively at various phases during the drug development process. These techniques are used to solve a number of classification problems such as predicting whether or not a chemical compound has the desired biological activity, is toxic or nontoxic, and filtering out drug-like compounds from large compound libraries. This paper presents a substructure-based classification algorithm that decouples the substructure discovery process from the classification model construction and uses frequent subgraph discovery algorithms to find all topological and geometric substructures present in the data set. The advantage of this approach is that during classification model construction, all relevant substructures are available allowing the classifier to intelligently select the most discriminating ones. The computational scalability is ensured by the use of highly efficient frequent subgraph discovery algorithms coupled with aggressive feature selection. Experimental evaluation on eight different classification problems shows that our approach is computationally scalable and, on average, outperforms existing schemes by 7 percent to 35 percent.
机译:建立模型以正确地将化合物正确分配给各种关注类别的计算技术在药物研究中有许多应用,并在药物开发过程的各个阶段广泛使用。这些技术用于解决许多分类问题,例如预测化合物是否具有所需的生物活性,有毒或无毒,以及从大型化合物库中过滤出类药物化合物。本文提出了一种基于子结构的分类算法,该算法将子结构发现过程与分类模型构建分离,并使用频繁的子图发现算法来查找数据集中存在的所有拓扑和几何子结构。这种方法的优势在于,在分类模型构建期间,所有相关的子结构均可用,从而使分类器能够智能地选择最具区分性的子结构。通过使用高效的频繁子图发现算法以及积极的特征选择,可以确保计算的可伸缩性。对八个不同分类问题的实验评估表明,我们的方法在计算上具有可扩展性,平均比现有方案高出7%至35%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号