首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Antipole tree indexing to support range search and k-nearest neighbor search in metric spaces
【24h】

Antipole tree indexing to support range search and k-nearest neighbor search in metric spaces

机译:反极树索引以支持度量空间中的范围搜索和k最近邻搜索

获取原文
获取原文并翻译 | 示例

摘要

Range and k-nearest neighbor searching are core problems in pattern recognition. Given a database S of objects in a metric space M and a query object q in M, in a range searching problem the goal is to find the objects of S within some threshold distance to g, whereas in a k-nearest neighbor searching problem, the k elements of S closest to q must be produced. These problems can obviously be solved with a linear number of distance calculations, by comparing the query object against every object in the database. However, the goal is to solve such problems much faster. We combine and extend ideas from the M-tree, the multivantage point structure, and the FQ-tree to create a new structure in the "bisector tree" class, called the Antipole tree. Bisection is based on the proximity to an "Antipole" pair of elements generated by a suitable linear randomized tournament. The final winners a, b of such a tournament is far enough apart to approximate the diameter of the splitting set. If dist(a, b) is larger than the chosen cluster diameter threshold, then the cluster is split. The proposed data structure is an indexing scheme suitable for (exact and approximate) best match searching on generic metric spaces. The Antipole tree outperforms by a factor of approximately two existing structures such as list of clusters, M-trees, and others and, in many cases, it achieves better clustering properties.
机译:距离和k最近邻搜索是模式识别中的核心问题。给定度量空间M中的对象数据库S和M中的查询对象q,在范围搜索问题中,目标是在距g某个阈值距离内找到S的对象,而在k近邻搜索问题中,必须生成最接近q的S的k个元素。通过将查询对象与数据库中的每个对象进行比较,显然可以通过线性计算距离来解决这些问题。但是,目标是更快地解决此类问题。我们结合并扩展了M树,多优势点结构和FQ树的思想,从而在“平分树”类中创建了一个称为反极树的新结构。对分是基于与合适的线性随机锦标赛生成的“反极”对元素的接近度。这样的比赛的最终获胜者a,b相距足够远,足以近似劈开组的直径。如果dist(a,b)大于所选的簇直径阈值,则对簇进行拆分。提出的数据结构是一种索引方案,适用于(精确和近似)通用度量空间上的最佳匹配搜索。 Antipole树的性能要好于大约两个现有结构(例如,群集列表,M树和其他列表),并且在许多情况下,它可以获得更好的群集性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号