首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Power-efficient access-point selection for indoor location estimation
【24h】

Power-efficient access-point selection for indoor location estimation

机译:室内位置估计的节能入口点选择

获取原文
获取原文并翻译 | 示例

摘要

An important goal of indoor location estimation systems is to increase the estimation accuracy while reducing the power consumption. In this paper, we present a novel algorithm known as CaDet for power-efficient location estimation by intelligently selecting the number of access points (APs) used for location estimation. We show that by employing machine learning techniques, CaDet is able to use a small subset of the APs in the environment to detect a client's location with high accuracy. CaDet uses a combination of information theory, clustering analysis, and a decision tree algorithm. By collecting data and testing our algorithms in a realistic WLAN environment in the computer science department area of the Hong Kong University of Science and Technology, we show that CaDet (clustering and decision tree-based method) can be much higher in accuracy as compared to other methods. We also show through experiments that, by intelligently selecting APs, we are able to save the power on the client device while achieving the same level of accuracy.
机译:室内位置估计系统的重要目标是在减少功耗的同时提高估计精度。在本文中,我们通过智能地选择用于位置估计的接入点(AP)的数量,提出了一种称为CaDet的新颖算法,可用于省电的位置估计。我们证明,通过采用机器学习技术,CaDet能够使用环境中一小部分AP来高精度检测客户的位置。 CaDet结合了信息理论,聚类分析和决策树算法。通过在香港科技大学计算机科学系区域的实际WLAN环境中收集数据并测试我们的算法,我们表明,与之相比,CaDet(基于聚类和决策树的方法)的准确性要高得多。其他方法。我们还通过实验表明,通过智能地选择AP,我们能够节省客户端设备的功耗,同时达到相同的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号