首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Incremental Evaluation of Sliding-Window Queries over Data Streams
【24h】

Incremental Evaluation of Sliding-Window Queries over Data Streams

机译:数据流上的滑动窗口查询的增量评估

获取原文
获取原文并翻译 | 示例

摘要

Two research efforts have been conducted to realize sliding-window queries in data stream management systems, namely, query revaluation and incremental evaluation. In the query reevaluation method, two consecutive windows are processed independently of each other. On the other hand, in the incremental evaluation method, the query answer for a window is obtained incrementally from the answer of the preceding window. In this paper, we focus on the incremental evaluation method. Two approaches have been adopted for the incremental evaluation of sliding-window queries, namely, the input-triggered approach and the negative tuples approach. In the input-triggered approach, only the newly inserted tuples flow in the query pipeline and tuple expiration is based on the timestamps of the newly inserted tuples. On the other hand, in the negative tuples approach, tuple expiration is separated from tuple insertion where a tuple flows in the pipeline for every inserted or expired tuple. The negative tuples approach avoids the unpredictable output delays that result from the input-triggered approach. However, negative tuples double the number of tuples through the query pipeline, thus reducing the pipeline bandwidth. Based on a detailed study of the incremental evaluation pipeline, we classify the incremental query operators into two classes according to whether an operator can avoid the processing of negative tuples or not. Based on this classification, we present several optimization techniques over the negative tuples approach that aim to reduce the overhead of processing negative tuples while avoiding the output delay of the query answer. A detailed experimental study, based on a prototype system implementation, shows the performance gains over the input-triggered approach of the negative tuples approach when accompanied with the proposed optimizations
机译:为了在数据流管理系统中实现滑动窗口查询,已经进行了两项研究工作,即查询重评估和增量评估。在查询重新评估方法中,两个连续的窗口彼此独立地进行处理。另一方面,在增量评估方法中,从前一个窗口的答案递增地获得窗口的查询答案。在本文中,我们将重点放在增量评估方法上。滑动窗口查询的增量评估已采用两种方法,即输入触发方法和负元组方法。在输入触发的方法中,只有新插入的元组在查询管道中流动,并且元组到期基于新插入的元组的时间戳。另一方面,在否定元组方法中,元组过期与元组插入分开,其中元组在管道中为每个插入或过期的元组流动。负元组方法避免了由输入触发方法导致的不可预测的输出延迟。但是,负元组将通过查询管道的元组数量加倍,从而减少了管道带宽。在对增量评估流水线进行详细研究的基础上,根据运算符是否可以避免处理负元组,将增量查询运算符分为两类。基于此分类,我们提出了一些针对消极元组方法的优化技术,旨在减少处理消极元组的开销,同时避免查询答案的输出延迟。基于原型系统实现的详细实验研究表明,与建议的优化相结合,性能优于负元组方法的输入触发方法

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号