首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Personalized Concept-Based Clustering of Search Engine Queries
【24h】

Personalized Concept-Based Clustering of Search Engine Queries

机译:基于个性化概念的搜索引擎查询聚类

获取原文
获取原文并翻译 | 示例

摘要

The exponential growth of information on the Web has introduced new challenges for building effective search engines. A major problem of web search is that search queries are usually short and ambiguous, and thus are insufficient for specifying the precise user needs. To alleviate this problem, some search engines suggest terms that are semantically related to the submitted queries so that users can choose from the suggestions the ones that reflect their information needs. In this paper, we introduce an effective approach that captures the user's conceptual preferences in order to provide personalized query suggestions. We achieve this goal with two new strategies. First, we develop online techniques that extract concepts from the web-snippets of the search result returned from a query and use the concepts to identify related queries for that query. Second, we propose a new two-phase personalized agglomerative clustering algorithm that is able to generate personalized query clusters. To the best of the authors' knowledge, no previous work has addressed personalization for query suggestions. To evaluate the effectiveness of our technique, a Google middleware was developed for collecting clickthrough data to conduct experimental evaluation. Experimental results show that our approach has better precision and recall than the existing query clustering methods.
机译:Web上信息的指数级增长为构建有效的搜索引擎带来了新的挑战。网络搜索的一个主要问题是搜索查询通常简短而模棱两可,因此不足以指定确切的用户需求。为了减轻这个问题,一些搜索引擎建议与提交的查询在语义上相关的术语,以便用户可以从建议中选择反映其信息需求的术语。在本文中,我们引入了一种有效的方法来捕获用户的概念偏好,以便提供个性化的查询建议。我们通过两种新策略实现了这一目标。首先,我们开发了在线技术,该技术可从查询返回的搜索结果的网页摘要中提取概念,并使用这些概念来识别该查询的相关查询。其次,我们提出了一种新的两阶段个性化聚集聚类算法,该算法能够生成个性化查询聚类。据作者所知,以前的工作都没有针对查询建议进行个性化设置。为了评估我们技术的有效性,开发了一种Google中间件,用于收集点击数据以进行实验评估。实验结果表明,与现有的查询聚类方法相比,该方法具有更高的精度和查全率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号