首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Feature Extraction and Uncorrelated Discriminant Analysis for High-Dimensional Data
【24h】

Feature Extraction and Uncorrelated Discriminant Analysis for High-Dimensional Data

机译:高维数据的特征提取和不相关判别分析

获取原文
获取原文并翻译 | 示例

摘要

High-dimensional data and small sample size problem occur in many modern pattern classification applications, such as face recognition and gene expression data analysis. To deal with such data, an important step is the dimensionality reduction. Principal component analysis(PCA) and between-group analysis(BGA) are two commonly used methods and various extensions exist. The principle of these two approaches comes from their best approximation. From a pattern recognition perspective we show that PCA based on total-scatter matrix preserves linear separability and BGA based on between-scatter matrix retains only the distances between class centroid. Moreover we propose a novel uncorrelated discriminant analysis (UDA) algorithm. It combines rank preserving dimensionality reduction and constraint discriminant analysis, and serves as a simple and complete solution for small sample size problem. We conduct a series of comparative study on face images and gene expression data sets to evaluate UDA in terms of classification accuracy and robustness.
机译:高维数据和小样本量问题出现在许多现代模式分类应用中,例如人脸识别和基因表达数据分析。为了处理此类数据,重要的一步是降维。主成分分析(PCA)和组间分析(BGA)是两种常用方法,并且存在各种扩展。这两种方法的原理来自于它们的最佳近似。从模式识别的角度来看,我们表明基于总散点矩阵的PCA保留了线性可分离性,而基于散点间矩阵的BGA仅保留了类重心之间的距离。此外,我们提出了一种新颖的不相关判别分析(UDA)算法。它结合了保留秩降维和约束判别分析,并作为小样本量问题的简单而完整的解决方案。我们对面部图像和基因表达数据集进行了一系列比较研究,以从分类准确性和鲁棒性方面评估UDA。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号