首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >A Framework for Mining Sequential Patterns from Spatio-Temporal Event Data Sets
【24h】

A Framework for Mining Sequential Patterns from Spatio-Temporal Event Data Sets

机译:从时空事件数据集中挖掘顺序模式的框架

获取原文
获取原文并翻译 | 示例

摘要

Given a large spatio-temporal database of events, where each event consists of the following fields: event-ID, time, location, event-type, mining spatio-temporal sequential patterns is to identify significant event type sequences. Such spatio-temporal sequential patterns are crucial to investigate spatial and temporal evolutions of phenomena in many application domains. Recent literatures have explored the sequential patterns on transaction data and trajectory analysis on moving objects. However, these methods can not be directly applied to mining sequential patterns from a large number of spatio-temporal events. Two major research challenges are still remaining: (i) the definition of significance measures for spatio-temporal sequential patterns to avoid spurious ones; (ii) the algorithmic design under the significance measures which may not guarantee the downward closure property. In this paper, we propose a sequence index as the significance measure for spatio-temporal sequential patterns, which is meaningful due to its interpretability using spatial statistics. We propose a novel algorithm called Slicing-STS-Miner to tackle the algorithmic design challenges using the spatial sequence index which does not preserve the downward closure property. We compare the proposed algorithm with a simple algorithm called STS-Miner that utilizes the weak monotone property of the sequence index. Performance evaluations using both synthetic and real world datasets shows that the Slicing-STS-Miner is an order of magnitude faster than STS-Miner for large datasets.
机译:给定一个大型的事件时空数据库,其中每个事件由以下字段组成:事件ID,时间,位置,事件类型,挖掘时空顺序模式是为了识别重要的事件类型序列。这种时空顺序模式对于研究许多应用领域中现象的时空演化至关重要。最近的文献探索了交易数据的顺序模式和移动物体的轨迹分析。但是,这些方法不能直接应用于从大量时空事件中挖掘顺序模式。仍然存在两个主要的研究挑战:(i)定义时空顺序模式的重要度量以避免伪造; (ii)在重要措施下可能无法保证向下封闭性的算法设计。在本文中,我们提出了序列索引作为时空顺序模式的重要度量,由于其使用空间统计数据的可解释性,因此具有重要意义。我们提出了一种新的算法,称为Slicing-STS-Miner,以解决使用空间序列索引的算法设计挑战,该序列索引不保留向下闭合属性。我们将提出的算法与简单的算法STS-Miner进行比较,该算法利用了序列索引的弱单调特性。使用综合和真实数据集的性能评估表明,对于大型数据集,Slicing-STS-Miner比STS-Miner快一个数量级。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号