首页> 外文期刊>Knowledge and Data Engineering, IEEE Transactions on >Managing Frequent Updates in R-Trees for Update-Intensive Applications
【24h】

Managing Frequent Updates in R-Trees for Update-Intensive Applications

机译:为密集型应用程序管理R树中的频繁更新

获取原文
获取原文并翻译 | 示例

摘要

Managing frequent updates is greatly important in many update-intensive applications, such as location-aware services, sensor networks, and stream databases. In this paper, we present an R-tree-based index structure (called {rm R}^{rm{{sb}}}-tree, R-tree with semibulk loading) for efficiently managing frequent updates from massive moving objects. The concept of semibulk loading is exploiting a small in-memory buffer to defer, buffer, and group the incoming updates and bulk-insert these updates simultaneously. With a reasonable memory overhead (typically only 1 percent of the whole data set), the proposed approach far outperforms the previous works in terms of update and query performance as well in a realistic environment. In order to further increase buffer hit ratio for the proposed approach, a new page-replacement policy that exploits the level of buffered node is proposed. Furthermore, we introduce the concept of deferring threshold ratio (dtr) that simply enables deferring CPU- and I/O-intensive operations such as node splits and removals. Extensive experimental evaluation reveals that the proposed approach is far more efficient than previous approaches for managing frequent updates under various settings.
机译:在许多更新密集型应用程序(例如位置感知服务,传感器网络和流数据库)中,管理频繁更新非常重要。在本文中,我们提出了一种基于R树的索引结构(称为{rm R} ^ {rm {{sb}}}树,具有半批量加载的R树),可以有效地管理大型移动对象的频繁更新。半批量加载的概念是利用内存中的小缓冲区来延迟,缓冲和分组传入的更新,并同时批量插入这些更新。由于具有合理的内存开销(通常仅占整个数据集的1%),因此,在更新和查询性能以及在实际环境中,该方法都远远优于以前的工作。为了进一步提高所提出方法的缓冲命中率,提出了一种新的利用缓冲节点层次的页面替换策略。此外,我们引入了延迟阈值比率(dtr)的概念,该概念仅使延迟CPU和I / O密集型操作(例如节点拆分和移除)成为可能。广泛的实验评估表明,所提出的方法比以前的方法在各种设置下管理频繁更新的效率要高得多。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号