首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >SPOT Databases: Efficient Consistency Checking and Optimistic Selection in Probabilistic Spatial Databases
【24h】

SPOT Databases: Efficient Consistency Checking and Optimistic Selection in Probabilistic Spatial Databases

机译:SPOT数据库:概率空间数据库中的有效一致性检查和乐观选择

获取原文
获取原文并翻译 | 示例

摘要

Spatial PrObabilistic Temporal (SPOT) databases are a paradigm for reasoning with probabilistic statements about where objects are now or in the future. They express statements of the form "Object O is in spatial region R at time t with some probability in the interval [L,U]." Past work on SPOT databases uses selection operators returning SPOT atoms entailed by the SPOT database - we call this "cautious" selection. In this paper, we study several problems. First, we introduce the notion of "optimistic" selection queries that return sets of SPOT atoms consistent with, rather than entailed by, the SPOT database. We then develop an approach to scaling SPOT databases that has three main contributions: (i) We substantially reduce the size of past work's linear programs via variable elimination. (ii) We rigorously prove how one can prune the space searched in optimistic selection. (iii) We build an efficient index to execute optimistic selection queries over SPOT databases. Our approach is superior to past work in two major respects: first, it makes fewer assumptions than all past works on this topic except [30]. Second, the experiments - some using real world ship movement data - show substantially better performance than achieved in [30].
机译:空间概率时态(SPOT)数据库是用概率性陈述来推理对象当前或将来位置的范例。它们以“对象O在时间t处在空间区域R中的概率为[L,U]间隔”的形式表示。过去在SPOT数据库上的工作使用选择运算符返回SPOT数据库所包含的SPOT原子-我们称之为“谨慎”选择。在本文中,我们研究了几个问题。首先,我们引入“乐观”选择查询的概念,该查询返回与SPOT数据库一致而不是SPOT数据库所包含的SPOT原子集。然后,我们开发一种扩展SPOT数据库的方法,该方法具有三个主要作用:(i)通过消除变量,大大减少了以前工作的线性程序的规模。 (ii)我们严格证明了如何在乐观选择中修剪搜索到的空间。 (iii)我们建立了一个有效的索引来对SPOT数据库执行乐观选择查询。在两个主要方面,我们的方法要优于过去的工作:首先,与过去有关该主题的所有工作相比,做出的假设要少得多[30]。其次,实验(其中一些使用现实世界中的船舶运动数据)显示出比[30]中所实现的要好得多的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号