首页> 外文期刊>Knowledge and Data Engineering, IEEE Transactions on >Network Similarity Decomposition (NSD): A Fast and Scalable Approach to Network Alignment
【24h】

Network Similarity Decomposition (NSD): A Fast and Scalable Approach to Network Alignment

机译:网络相似性分解(NSD):一种快速且可扩展的网络对准方法

获取原文
获取原文并翻译 | 示例

摘要

As graph-structured data sets become commonplace, there is increasing need for efficient ways of analyzing such data sets. These analyses include conservation, alignment, differentiation, and discrimination, among others. When defined on general graphs, these problems are considerably harder than their well-studied counterparts on sets and sequences. In this paper, we study the problem of global alignment of large sparse graphs. Specifically, we investigate efficient methods for computing approximations to the state-of-the-art IsoRank solution for finding pairwise topological similarity between nodes in two networks (or within the same network). Pairs of nodes with high similarity can be used to seed global alignments. We present a novel approach to this computationally expensive problem based on uncoupling and decomposing ranking calculations associated with the computation of similarity scores. Uncoupling refers to independent preprocessing of each input graph. Decomposition implies that pairwise similarity scores can be explicitly broken down into contributions from different link patterns traced back to a low-rank approximation of the initial conditions for the computation. These two concepts result in significant improvements, in terms of computational cost, interpretability of similarity scores, and nature of supported queries. We show over two orders of magnitude improvement in performance over IsoRank/Random Walk formulations, and over an order of magnitude improvement over constrained matrix-triple-product formulations, in the context of real data sets.
机译:随着图结构化数据集的普及,对分析此类数据集的有效方法的需求日益增长。这些分析包括保护,对齐,区分和歧视等。当在一般图形上定义时,这些问题比在集和序列上经过充分研究的对应问题要难得多。在本文中,我们研究了大型稀疏图的全局对齐问题。具体而言,我们研究了用于计算与最新的IsoRank解决方案近似的有效方法,以找到两个网络(或同一网络内)的节点之间的成对拓扑相似性。具有高度相似性的成对节点可用于播种全局比对。我们提出了一种新的方法来解决这个计算量大的问题,它基于与相似度得分的计算相关联的分解和分解排名计算。解耦是指每个输入图的独立预处理。分解意味着可以将成对相似性分数明确地分解为来自不同链接模式的贡献,这些贡献可以追溯到计算的初始条件的低秩近似。这两个概念在计算成本,相似性评分的可解释性以及所支持查询的性质方面都带来了显着改善。在真实数据集的背景下,我们显示出与IsoRank / Random Walk公式相比,性能提高了两个数量级,而与约束矩阵-三乘积公式相比,性能提高了两个数量级。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号