首页> 外文期刊>Knowledge and Data Engineering, IEEE Transactions on >Weakly Supervised Joint Sentiment-Topic Detection from Text
【24h】

Weakly Supervised Joint Sentiment-Topic Detection from Text

机译:来自文本的弱监督联合情感主题检测

获取原文
获取原文并翻译 | 示例

摘要

Sentiment analysis or opinion mining aims to use automated tools to detect subjective information such as opinions, attitudes, and feelings expressed in text. This paper proposes a novel probabilistic modeling framework called joint sentiment-topic (JST) model based on latent Dirichlet allocation (LDA), which detects sentiment and topic simultaneously from text. A reparameterized version of the JST model called Reverse-JST, obtained by reversing the sequence of sentiment and topic generation in the modeling process, is also studied. Although JST is equivalent to Reverse-JST without a hierarchical prior, extensive experiments show that when sentiment priors are added, JST performs consistently better than Reverse-JST. Besides, unlike supervised approaches to sentiment classification which often fail to produce satisfactory performance when shifting to other domains, the weakly supervised nature of JST makes it highly portable to other domains. This is verified by the experimental results on data sets from five different domains where the JST model even outperforms existing semi-supervised approaches in some of the data sets despite using no labeled documents. Moreover, the topics and topic sentiment detected by JST are indeed coherent and informative. We hypothesize that the JST model can readily meet the demand of large-scale sentiment analysis from the web in an open-ended fashion.
机译:情感分析或观点挖掘旨在使用自动化工具来检测主观信息,例如文本中表达的观点,态度和感受。本文提出了一种基于潜在狄利克雷分配(LDA)的新型概率建模框架,称为联合情感主题(JST)模型,该模型可同时从文本中检测情感和主题。还研究了JST模型的重新参数化版本,称为Reverse-JST,它是通过在建模过程中反转情感和主题生成的顺序而获得的。尽管JST相当于没有分层先验的反向JST,但大量实验表明,当添加情感先验时,JST的性能始终优于反向JST。此外,与情感分类的监督方法不同(通常在转移到其他域时通常无法产生令人满意的性能),JST的弱监督性质使其可以高度移植到其他域。来自五个不同领域的数据集的实验结果证实了这一点,尽管没有使用带标签的文档,但JST模型甚至在某些数据集中的表现优于现有的半监督方法。而且,JST检测到的主题和主题情感确实是连贯和有益的。我们假设JST模型可以很容易地以开放式方式满足Web上大规模情感分析的需求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号