首页> 外文期刊>Knowledge and Data Engineering, IEEE Transactions on >Efficient Processing of Uncertain Events in Rule-Based Systems
【24h】

Efficient Processing of Uncertain Events in Rule-Based Systems

机译:基于规则的系统中不确定事件的有效处理

获取原文
获取原文并翻译 | 示例

摘要

There is a growing need for systems that react automatically to events. While some events are generated externally and deliver data across distributed systems, others need to be derived by the system itself based on available information. Event derivation is hampered by uncertainty attributed to causes such as unreliable data sources or the inability to determine with certainty whether an event has actually occurred, given available information. Two main challenges exist when designing a solution for event derivation under uncertainty. First, event derivation should scale under heavy loads of incoming events. Second, the associated probabilities must be correctly captured and represented. We present a solution to both problems by introducing a novel generic and formal mechanism and framework for managing event derivation under uncertainty. We also provide empirical evidence demonstrating the scalability and accuracy of our approach.
机译:对系统自动响应事件的需求日益增长。尽管某些事件是在外部生成的,并在分布式系统中传递数据,但其他事件则需要由系统本身根据可用信息派生。事件推导受到不确定性的影响,这些不确定性归因于诸如不可靠的数据源之类的原因,或者在给定可用信息的情况下无法确定事件是否确实发生。设计不确定性下的事件派生解决方案时,存在两个主要挑战。首先,事件推导应在大量传入事件下扩展。其次,必须正确地捕获和表示关联的概率。我们通过引入新颖的通用和形式化机制和框架来管理不确定性下的事件派生,提出了对这两个问题的解决方案。我们还提供了经验证据,证明了我们方法的可扩展性和准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号