首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >A Learning Approach to SQL Query Results Ranking Using Skyline and Users' Current Navigational Behavior
【24h】

A Learning Approach to SQL Query Results Ranking Using Skyline and Users' Current Navigational Behavior

机译:一种使用天际线和用户当前导航行为对SQL查询结果进行排名的学习方法

获取原文
获取原文并翻译 | 示例

摘要

Users often find that their queries against a database return too many answers, many of them irrelevant. A common solution is to rank the query results. The effectiveness of a ranking function depends on how well it captures users' preferences. However, database systems often do not have the complete information about users' preferences and users' preferences are often heterogeneous (i.e., some preferences are static and common to all users while some are dynamic and diverse). Existing solutions do not address these two issues. In this paper, we propose a novel approach to address these shortcomings: 1) it addresses the heterogeneous issue by using skyline to capture users' static and common preferences and using users' current navigational behavior to capture users' dynamic and diverse preferences; 2) it addresses the incompleteness issue by using a machine learning technique to learn a ranking function based on training examples constructed from the above two types of information. Experimental results demonstrate the benefits of our approach.
机译:用户经常发现他们对数据库的查询返回的答案太多,其中许多都是不相关的。常见的解决方案是对查询结果进行排名。排名功能的有效性取决于它捕获用户偏好的程度。然而,数据库系统通常不具有关于用户偏好的完整信息,并且用户偏好通常是异类的(即,某些偏好是静态的并且对于所有用户都是通用的,而某些偏好是动态的并且是多样化的)。现有的解决方案不能解决这两个问题。在本文中,我们提出了一种新颖的方法来解决这些缺点:1)通过使用天际线捕获用户的静态和共同偏好,并使用用户当前的导航行为来捕获用户的动态和多样化偏好,来解决异构问题。 2)它通过使用一种机器学习技术来解决不完全性问题,该技术基于从以上两种信息构成的训练示例中学习排名函数。实验结果证明了我们方法的好处。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号