首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >A Bayesian Inference-Based Framework for RFID Data Cleansing
【24h】

A Bayesian Inference-Based Framework for RFID Data Cleansing

机译:基于贝叶斯推理的RFID数据清洗框架

获取原文
获取原文并翻译 | 示例

摘要

The past few years have witnessed the emergence of an increasing number of applications for tracking and tracing based on radio frequency identification (RFID) technologies. However, raw RFID readings are usually of low quality and may contain numerous anomalies. An ideal solution for RFID data cleansing should address the following issues. First, in many applications, duplicate readings of the same object are very common. The solution should take advantage of the resulting data redundancy for data cleaning. Second, prior knowledge about the environment may help improve data quality, and a desired solution must be able to take into account such knowledge. Third, the solution should take advantage of physical constraints in target applications to elevate the accuracy of data cleansing. There are several existing RFID data cleansing techniques. However, none of them support all the aforementioned features. In this paper, we propose a Bayesian inference-based framework for cleaning RFID raw data. We first design an $(n)$-state detection model and formally prove that the three-state model can maximize the system performance. Then, we extend the $(n)$-state model to support two-dimensional RFID reader arrays and compute the likelihood efficiently. In addition, we devise a Metropolis-Hastings sampler with constraints, which incorporates constraint management to clean RFID data with high efficiency and accuracy. Moreover, to support real-time object monitoring, we present the streaming Bayesian inference method to cope with real-time RFID data streams. Finally, we evaluate the performance of our solutions through extensive experiments.
机译:在过去的几年中,目睹了越来越多的基于射频识别(RFID)技术的跟踪和追踪应用程序的出现。但是,原始的RFID读数通常质量较低,并且可能包含许多异常情况。 RFID数据清洗的理想解决方案应解决以下问题。首先,在许多应用中,相同对象的重复读数非常普遍。该解决方案应利用由此产生的数据冗余进行数据清理。其次,有关环境的先验知识可能有助于提高数据质量,并且所需的解决方案必须能够考虑这些知识。第三,该解决方案应利用目标应用程序中的物理约束来提高数据清理的准确性。现有几种RFID数据清洗技术。但是,它们都不支持所有上述功能。在本文中,我们提出了一种基于贝叶斯推理的框架来清除RFID原始数据。我们首先设计一个$(n)$状态检测模型,并正式证明三状态模型可以最大化系统性能。然后,我们扩展$(n)$状态模型以支持二维RFID阅读器阵列并有效地计算似然度。此外,我们设计了带有约束的Metropolis-Hastings采样器,该采样器结合了约束管理,可以高效,准确地清理RFID数据。此外,为了支持实时对象监视,我们提出了流贝叶斯推理方法来应对实时RFID数据流。最后,我们通过广泛的实验评估解决方案的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号