首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Mining Graph Topological Patterns: Finding Covariations among Vertex Descriptors
【24h】

Mining Graph Topological Patterns: Finding Covariations among Vertex Descriptors

机译:挖掘图拓扑模式:寻找顶点描述符之间的协变

获取原文
获取原文并翻译 | 示例

摘要

We propose to mine the graph topology of a large attributed graph by finding regularities among vertex descriptors. Such descriptors are of two types: 1) the vertex attributes that convey the information of the vertices themselves and 2) some topological properties used to describe the connectivity of the vertices. These descriptors are mostly of numerical or ordinal types and their similarity can be captured by quantifying their covariation. Mining topological patterns relies on frequent pattern mining and graph topology analysis to reveal the links that exist between the relation encoded by the graph and the vertex attributes. We propose three interestingness measures of topological patterns that differ by the pairs of vertices considered while evaluating up and down co-variations between vertex descriptors. An efficient algorithm that combines search and pruning strategies to look for the most relevant topological patterns is presented. Besides a classical empirical study, we report case studies on four real-life networks showing that our approach provides valuable knowledge.
机译:我们建议通过查找顶点描述符之间的规则性来挖掘大型属性图的图拓扑。这样的描述符有两种类型:1)传达顶点本身信息的顶点属性,以及2)用于描述顶点连通性的某些拓扑属性。这些描述符大多数是数字或序数类型的,可以通过量化其协方差来捕获它们的相似性。挖掘拓扑模式依赖于频繁的模式挖掘和图拓扑分析,以揭示图编码的关系与顶点属性之间存在的联系。我们提出了三种有趣的拓扑模式度量方法,这些度量因评估顶点描述符之间的上下协变而考虑的成对顶点而不同。提出了一种有效的算法,该算法结合了搜索和修剪策略以寻找最相关的拓扑模式。除了经典的实证研究之外,我们还报告了四个现实网络的案例研究,表明我们的方法提供了宝贵的知识。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号