首页> 外文期刊>Knowledge and Data Engineering, IEEE Transactions on >Fast Activity Detection: Indexing for Temporal Stochastic Automaton-Based Activity Models
【24h】

Fast Activity Detection: Indexing for Temporal Stochastic Automaton-Based Activity Models

机译:快速的活动检测:基于时间随机自动机的活动模型的索引

获取原文
获取原文并翻译 | 示例

摘要

Today, numerous applications require the ability to monitor a continuous stream of fine-grained data for the occurrence of certain high-level activities. A number of computerized systems—including ATM networks, web servers, and intrusion detection systems—systematically track every atomic action we perform, thus generating massive streams of timestamped observation data, possibly from multiple concurrent activities. In this paper, we address the problem of efficiently detecting occurrences of high-level activities from such interleaved data streams. A solution to this important problem would greatly benefit a broad range of applications, including fraud detection, video surveillance, and cyber security. There has been extensive work in the last few years on modeling activities using probabilistic models. In this paper, we propose a temporal probabilistic graph so that the elapsed time between observations also plays a role in defining whether a sequence of observations constitutes an activity. We first propose a data structure called “temporal multiactivity graph” to store multiple activities that need to be concurrently monitored. We then define an index called Temporal Multiactivity Graph Index Creation (tMAGIC) that, based on this data structure, examines and links observations as they occur. We define algorithms for insertion and bulk insertion into the tMAGIC index and show that this can be efficiently accomplished. We also define algorithms to solve two problems: the “evidence” problem that tries to find all occurrences of an activity (with probability over a threshold) within a given sequence of observations, and the “identification” problem that tries to find the activity that best matches a sequence of observations. We introduce complexity reducing restrictions and pruning strategies to make the problem—which is intrinsically exponential—- inear to the number of observations. Our experiments confirm that tMAGIC has time and space complexity linear to the size of the input, and can efficiently retrieve instances of the monitored activities.
机译:如今,许多应用程序要求能够监视连续的细粒度数据流,以进行某些高级活动。许多计算机化系统(包括ATM网络,Web服务器和入侵检测系统)系统地跟踪我们执行的每个原子动作,从而生成可能带有多个并发活动的带有时间戳的大量观测数据流。在本文中,我们解决了从此类交错数据流中有效检测高层活动的发生的问题。解决此重要问题的方法将极大地有利于广泛的应用,包括欺诈检测,视频监视和网络安全。过去几年中,在使用概率模型进行建模活动方面进行了大量工作。在本文中,我们提出了一个时间概率图,以便观察之间的经过时间也可以用来定义观察序列是否构成活动。我们首先提出一种称为“时间多活动图”的数据结构,以存储需要同时监视的多个活动。然后,我们定义一个称为“时间多活动图索引创建(tMAGIC)”的索引,该索引基于此数据结构在观察到的情况下对其进行检查和链接。我们定义了将插入和批量插入tMAGIC索引的算法,并表明可以有效地实现这一点。我们还定义了解决以下两个问题的算法:“证据”问题,试图找到给定观测序列内活动的所有出现(概率超过阈值),以及“识别”问题,试图找到活动的所有出现。最符合观察序列。我们引入了降低复杂性的限制和修剪策略,以使问题(本质上是指数性的)在观察数量之内。我们的实验证实,tMAGIC具有与输入大小成线性关系的时间和空间复杂度,并且可以有效地检索受监视活动的实例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号