首页> 外文期刊>Knowledge and Data Engineering, IEEE Transactions on >Web-Page Recommendation Based on Web Usage and Domain Knowledge
【24h】

Web-Page Recommendation Based on Web Usage and Domain Knowledge

机译:基于Web使用和领域知识的网页推荐

获取原文
获取原文并翻译 | 示例

摘要

Web-page recommendation plays an important role in intelligent Web systems. Useful knowledge discovery from Web usage data and satisfactory knowledge representation for effective Web-page recommendations are crucial and challenging. This paper proposes a novel method to efficiently provide better Web-page recommendation through semantic-enhancement by integrating the domain and Web usage knowledge of a website. Two new models are proposed to represent the domain knowledge. The first model uses an ontology to represent the domain knowledge. The second model uses one automatically generated semantic network to represent domain terms, Web-pages, and the relations between them. Another new model, the conceptual prediction model, is proposed to automatically generate a semantic network of the semantic Web usage knowledge, which is the integration of domain knowledge and Web usage knowledge. A number of effective queries have been developed to query about these knowledge bases. Based on these queries, a set of recommendation strategies have been proposed to generate Web-page candidates. The recommendation results have been compared with the results obtained from an advanced existing Web Usage Mining (WUM) method. The experimental results demonstrate that the proposed method produces significantly higher performance than the WUM method.
机译:网页推荐在智能Web系统中起着重要作用。从Web使用数据中发现有用的知识,以及有效的Web页面推荐中令人满意的知识表示,都是至关重要且充满挑战的。本文提出了一种新颖的方法,通过整合网站的域和Web使用知识,通过语义增强有效地提供更好的网页推荐。提出了两种新的模型来表示领域知识。第一个模型使用本体来表示领域知识。第二种模型使用一个自动生成的语义网络来表示领域术语,网页及其之间的关系。提出了另一种新模型,即概念预测模型,该模型可以自动生成语义Web使用知识的语义网络,这是领域知识和Web使用知识的集成。已经开发出许多有效的查询来查询这些知识库。基于这些查询,提出了一组推荐策略来生成网页候选。已将推荐结果与从现有高级Web用法挖掘(WUM)方法获得的结果进行了比较。实验结果表明,与WUM方法相比,该方法具有更高的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号