首页> 外文期刊>Knowledge and Data Engineering, IEEE Transactions on >Semantic Computing of Moods Based on Tags in Social Media of Music
【24h】

Semantic Computing of Moods Based on Tags in Social Media of Music

机译:基于音乐社交媒体中标签的情绪语义计算

获取原文
获取原文并翻译 | 示例

摘要

Social tags inherent in online music services such as Last.fm provide a rich source of information on musical moods. The abundance of social tags makes this data highly beneficial for developing techniques to manage and retrieve mood information, and enables study of the relationships between music content and mood representations with data substantially larger than that available for conventional emotion research. However, no systematic assessment has been done on the accuracy of social tags and derived semantic models at capturing mood information in music. We propose a novel technique called Affective Circumplex Transformation (ACT) for representing the moods of music tracks in an interpretable and robust fashion based on semantic computing of social tags and research in emotion modeling. We validate the technique by predicting listener ratings of moods in music tracks, and compare the results to prediction with the Vector Space Model (VSM), Singular Value Decomposition (SVD), Nonnegative Matrix Factorization (NMF), and Probabilistic Latent Semantic Analysis (PLSA). The results show that ACT consistently outperforms the baseline techniques, and its performance is robust against a low number of track-level mood tags. The results give validity and analytical insights for harnessing millions of music tracks and associated mood data available through social tags in application development.
机译:在线音乐服务(例如Last.fm)中固有的社交标签提供了有关音乐情绪的丰富信息源。丰富的社交标签使此数据对于开发用于管理和检索情绪信息的技术非常有用,并且可以用比常规情绪研究大得多的数据研究音乐内容与情绪表示之间的关系。但是,在捕获音乐中的情绪信息时,尚未对社交标签和派生的语义模型的准确性进行系统的评估。我们提出了一种称为情感环转(ACT)的新技术,该技术基于社交标签的语义计算和情感建模研究,以可解释且健壮的方式表示音乐曲目的情绪。我们通过预测音乐曲目中情绪的听众评级来验证该技术,并将结果与​​向量空间模型(VSM),奇异值分解(SVD),非负矩阵分解(NMF)和概率潜在语义分析(PLSA)进行比较)。结果表明,ACT始终优于基线技术,并且其性能在跟踪曲目数量较少的情绪标签方面表现出色。结果为在应用程序开发中利用社交标签提供的数百万首音乐曲目和相关的情绪数据提供了有效性和分析见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号