首页> 外文期刊>Knowledge and Data Engineering, IEEE Transactions on >Lagrangian Approaches to Storage of Spatio-Temporal Network Datasets
【24h】

Lagrangian Approaches to Storage of Spatio-Temporal Network Datasets

机译:拉格朗日方法存储时空网络数据集

获取原文
获取原文并翻译 | 示例

摘要

Given a spatio-temporal network (STN) and a set of STN operations, the goal of the Storing Spatio-Temporal Networks (SSTN) problem is to produce an efficient method of storing STN data that minimizes disk I/O costs for given STN operations. The SSTN problem is important for many societal applications, such as surface and air transportation management systems. The problem is NP hard, and is challenging due to an inherently large data volume and novel semantics (e.g., Lagrangian reference frame). Related works rely on orthogonal partitioning approaches (e.g., snapshot and longitudinal) and incur excessive I/O costs when performing common STN queries. Our preliminary work proposed a non-orthogonal partitioning approach in which we optimized the (LGetOneSuccessor()) operation that retrieves a single successor for a given node on STN. In this paper, we provide a method to optimize the (LGetAllSuccessors()) operation, which retrieves all successors for a given node on a STN. This new approach uses the concept of a Lagrangian Family Set (LFS) to model data access patterns for STN queries. Experimental results using real-world road and flight traffic datasets demonstrate that the proposed approach outperforms prior work for (LGetAllSuccessors()) computation workloads.
机译:给定一个时空网络(STN)和一组STN操作,存储时空网络(SSTN)问题的目标是产生一种有效的存储STN数据的方法,该方法可以最大程度地减少给定STN操作的磁盘I / O成本。 SSTN问题对于许多社会应用来说都很重要,例如地面和空中运输管理系统。该问题是NP难题,并且由于固有的大数据量和新颖的语义(例如,拉格朗日参考系)而具有挑战性。相关工作依赖于正交分区方法(例如,快照和纵向),并且在执行常见的STN查询时招致过多的I / O成本。我们的初步工作提出了一种非正交的分区方法,其中我们优化了 (LGetOneSuccessor()) 操作,该操作可检索STN上给定节点的单个后继。在本文中,我们提供了一种优化 (LGetAllSuccessors()) 操作的方法,该操作可检索STN上的给定节点。这种新方法使用拉格朗日族集(LFS)的概念为STN查询的数据访问模式建模。使用实际道路和飞行交通数据集的实验结果表明,对于 (LGetAllSuccessors()) 计算工作量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号