首页> 外文期刊>Knowledge and Data Engineering, IEEE Transactions on >Personalized Recommendation Combining User Interest and Social Circle
【24h】

Personalized Recommendation Combining User Interest and Social Circle

机译:结合用户兴趣和社交圈的个性化推荐

获取原文
获取原文并翻译 | 示例

摘要

With the advent and popularity of social network, more and more users like to share their experiences, such as ratings, reviews, and blogs. The new factors of social network like interpersonal influence and interest based on circles of friends bring opportunities and challenges for recommender system (RS) to solve the cold start and sparsity problem of datasets. Some of the social factors have been used in RS, but have not been fully considered. In this paper, three social factors, personal interest, interpersonal interest similarity, and interpersonal influence, fuse into a unified personalized recommendation model based on probabilistic matrix factorization. The factor of personal interest can make the RS recommend items to meet users’ individualities, especially for experienced users. Moreover, for cold start users, the interpersonal interest similarity and interpersonal influence can enhance the intrinsic link among features in the latent space. We conduct a series of experiments on three rating datasets: Yelp, MovieLens, and Douban Movie. Experimental results show the proposed approach outperforms the existing RS approaches.
机译:随着社交网络的出现和普及,越来越多的用户喜欢分享他们的经验,例如评分,评论和博客。社交网络的新因素,例如基于朋友圈的人际影响力和兴趣,给推荐系统(RS)带来了机遇和挑战,从而解决了数据集的冷启动和稀疏性问题。 RS中已使用了某些社会因素,但尚未充分考虑。本文将个人兴趣,人际利益相似度和人际影响力这三个社会因素融合为一个基于概率矩阵分解的统一个性化推荐模型。个人兴趣因素可以使RS推荐项目以满足用户的个性化需求,特别是对于有经验的用户。此外,对于冷启动用户而言,人际兴趣相似性和人际影响可以增强潜在空间中要素之间的内在联系。我们对三个评级数据集进行了一系列实验:Yelp,MovieLens和豆瓣电影。实验结果表明,该方法优于现有的RS方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号