首页> 外文期刊>Knowledge and Data Engineering, IEEE Transactions on >Swarm Fuzzy Systems: Knowledge Acquisition in Fuzzy Systems and Its Applications in Grid Computing
【24h】

Swarm Fuzzy Systems: Knowledge Acquisition in Fuzzy Systems and Its Applications in Grid Computing

机译:群体模糊系统:模糊系统中的知识获取及其在网格计算中的应用

获取原文
获取原文并翻译 | 示例

摘要

This work proposes the use of bio-inspired knowledge acquisition for Fuzzy Systems founded on Swarm Intelligence-Particle Swarm Optimization (SI-PSO). Swarm-based models consider knowledge entities as particles that move in the space to reach the higher quality. Fuzzy Systems following SI-PSO for knowledge acquisition are categorized in this work as Swarm Fuzzy Systems (SFSs). Specifically, two learning methodologies, KASIA (using rule bases as particles in PSO) and KARP (using rules as particles in PSO) are introduced. SFSs performance is studied in a problem of practical importance nowadays with data sets, the learning of fuzzy meta-schedulers in computational grids. Fuzzy meta-schedulers are Fuzzy Systems doing intelligent allocation of jobs to improve the performance of the grid, such as the reduction of the execution time of workload. The scheduling decisions are taken based on the knowledge of the Fuzzy System and in this way, the relevance of their learning process are critical. In this work, compared results of the performance of the different SFSs and a comparison between SFSs and Genetic Fuzzy Systems are presented. Simulations results show that SFSs can achieve a faster convergence and higher quality with a reduced number of control parameters what makes them a good alternative to Genetic Fuzzy Systems.
机译:这项工作建议在基于群体智能-粒子群优化(SI-PSO)的模糊系统中使用生物启发性知识获取。基于群体的模型将知识实体视为在空间中移动以达到更高质量的粒子。遵循SI-PSO进行知识获取的模糊系统在这项工作中被归类为群体模糊系统(SFS)。具体来说,介绍了两种学习方法:KASIA(在PSO中使用规则库作为粒子)和KARP(在PSO中使用规则作为粒子)。在当今具有实际重要性的问题中,通过数据集,计算网格中的模糊元调度程序的学习来研究SFS的性能。模糊元调度程序是模糊系统,它们进行作业的智能分配以提高网格的性能,例如减少工作负载的执行时间。调度决策是基于模糊系统的知识制定的,因此,其学习过程的相关性至关重要。在这项工作中,提出了不同SFS性能的比较结果,以及SFS与遗传模糊系统之间的比较。仿真结果表明,SFS可以通过减少控制参数的数量实现更快的收敛速度和更高的质量,这使其成为遗传模糊系统的良好替代方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号