首页> 外文期刊>Knowledge and Data Engineering, IEEE Transactions on >Context-Based Diversification for Keyword Queries Over XML Data
【24h】

Context-Based Diversification for Keyword Queries Over XML Data

机译:基于上下文的XML数据关键字查询多样化

获取原文
获取原文并翻译 | 示例

摘要

While keyword query empowers ordinary users to search vast amount of data, the ambiguity of keyword query makes it difficult to effectively answer keyword queries, especially for short and vague keyword queries. To address this challenging problem, in this paper we propose an approach that automatically diversifies XML keyword search based on its different contexts in the XML data. Given a short and vague keyword query and XML data to be searched, we first derive keyword search candidates of the query by a simple feature selection model. And then, we design an effective XML keyword search diversification model to measure the quality of each candidate. After that, two efficient algorithms are proposed to incrementally compute top- qualified query candidates as the diversified search intentions. Two selection criteria are targeted: the selected query candidates are most relevant to the given query while they have to cover maximal number of distinct results. At last, a comprehensive evaluation on real and synthetic data sets demonstrates the effectiveness of our proposed diversification model and the efficiency of our algorithms.
机译:尽管关键字查询使普通用户可以搜索大量数据,但是关键字查询的歧义性使其难以有效地回答关键字查询,尤其是对于简短而模糊的关键字查询而言。为了解决这个具有挑战性的问题,本文提出了一种基于XML数据中不同上下文自动使XML关键字搜索多样化的方法。给定简短而模糊的关键字查询和要搜索的XML数据,我们首先通过简单的特征选择模型得出查询的关键字搜索候选对象。然后,我们设计了一个有效的XML关键字搜索多元化模型来衡量每个候选人的素质。此后,提出了两种有效的算法来递增地计算最合格查询候选作为多样化的搜索意图。有两个选择标准作为目标:所选查询候选对象与给定查询最相关,而它们必须覆盖最大数量的不同结果。最后,对真实和综合数据集进行了全面评估,证明了我们提出的多元化模型的有效性和算法的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号