首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >A Novel Framework for Online Amnesic Trajectory Compression in Resource-Constrained Environments
【24h】

A Novel Framework for Online Amnesic Trajectory Compression in Resource-Constrained Environments

机译:资源受限环境中在线记忆删除弹道压缩的新框架

获取原文
获取原文并翻译 | 示例

摘要

State-of-the-art trajectory compression methods usually involve high space-time complexity or yield unsatisfactory compression rates, leading to rapid exhaustion of memory, computation, storage, and energy resources. Their ability is commonly limited when operating in a resource-constrained environment especially when the data volume (even when compressed) far exceeds the storage limit. Hence, we propose a novel online framework for error-bounded trajectory compression and ageing called the Amnesic Bounded Quadrant System (ABQS), whose core is the Bounded Quadrant System (BQS) algorithm family that includes a normal version (BQS), Fast version (FBQS), and a Progressive version (PBQS). ABQS intelligently manages a given storage and compresses the trajectories with different error tolerances subject to their ages. In the experiments, we conduct comprehensive evaluations for the BQS algorithm family and the ABQS framework. Using empirical GPS traces from flying foxes and cars, and synthetic data from simulation, we demonstrate the effectiveness of the standalone BQS algorithms in significantly reducing the time and space complexity of trajectory compression, while greatly improving the compression rates of the state-of-the-art algorithms (up to 45 percent). We also show that the operational time of the target resource-constrained hardware platform can be prolonged by up to 41 percent. We then verify that with ABQS, given data volumes that are far greater than storage space, ABQS is able to achieve 15 to 400 times smaller errors than the baselines. We also show that the algorithm is robust to extreme trajectory shapes.
机译:最先进的轨迹压缩方法通常涉及高时空复杂度或产生不令人满意的压缩率,从而导致内存,计算,存储和能源快速耗尽。当在资源受限的环境中操作时,尤其是当数据量(即使压缩时)远远超过存储限制时,它们的能力通常会受到限制。因此,我们提出了一种用于错误边界轨迹压缩和老化的新颖在线框架,称为遗忘边界象限系统(ABQS),其核心是边界象限系统(BQS)算法家族,其中包括普通版本(BQS),快速版本( FBQS)和渐进版本(PBQS)。 ABQS可以智能地管理给定的存储,并根据使用期限来压缩具有不同容错能力的轨迹。在实验中,我们对BQS算法家族和ABQS框架进行了综合评估。使用飞行狐狸和汽车的经验GPS轨迹以及模拟的综合数据,我们证明了独立的BQS算法在显着减少轨迹压缩的时间和空间复杂性的同时有效提高了状态压缩率的有效性。先进的算法(高达45%)。我们还表明,目标资源受限的硬件平台的运行时间最多可以延长41%。然后,我们通过ABQS验证,在给定的数据量远大于存储空间的情况下,ABQS能够实现比基线小15到400倍的错误。我们还证明了该算法对极端轨迹形状具有鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号