首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >PriGuard: A Semantic Approach to Detect Privacy Violations in Online Social Networks
【24h】

PriGuard: A Semantic Approach to Detect Privacy Violations in Online Social Networks

机译:PriGuard:一种检测在线社交网络中隐私侵犯行为的语义方法

获取原文
获取原文并翻译 | 示例

摘要

Social network users expect the social networks that they use to preserve their privacy. Traditionally, privacy breaches have been understood as the malfunctioning of a given system. However, in online social networks, privacy breaches are not necessarily a malfunctioning of a system but a byproduct of its workings. The users are allowed to create and share content about themselves and others. When multiple entities start distributing content without a control, information can reach unintended individuals and inference can reveal more information about the user. Accordingly, this paper first categorizes the privacy violations that take place in online social networks. Our categorization yields that the privacy violations in online social networks stem from intricate interactions and detecting these violations requires semantic understanding of events. Our proposed approach is based on agent-based representation of a social network, where the agents manage users' privacy requirements by creating commitments with the system. The privacy context, including the relations among users or content types, are captured using description logic. The proposed detection algorithm performs reasoning using the description logic and commitments on a varying depths of social networks. We implement the proposed model and evaluate our approach using real-life social networks.
机译:社交网络用户期望他们用来保护其隐私的社交网络。传统上,侵犯隐私被理解为给定系统的故障。但是,在在线社交网络中,侵犯隐私不一定是系统的故障,而是其工作的副产品。允许用户创建和共享有关自己和他人的内容。当多个实体开始在不受控制的情况下分发内容时,信息可能到达意想不到的个人,并且推断可以揭示有关用户的更多信息。因此,本文首先对在线社交网络中发生的侵犯隐私行为进行了分类。我们的分类结果表明,在线社交网络中的隐私侵害源于复杂的互动,而检测到这些侵害需要对事件进行语义理解。我们提出的方法基于社交网络的基于代理的表示,其中代理通过与系统创建承诺来管理用户的隐私要求。使用描述逻辑来捕获隐私上下文,包括用户或内容类型之间的关系。所提出的检测算法使用描述逻辑和承诺对社交网络的不同深度执行推理。我们实施提出的模型,并使用现实生活中的社交网络评估我们的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号